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Preface

The outlook of this second edition is the same as that of the original: to present linear
algebra as the theory and practice of linear spaces and linear mappings. Where it aids
understanding and calculations, I don't hesitate to describe vectors as arrays of
numbers and to describe mappings as matrices. Render onto Caesar the things which
are Caesar's.

If you can reduce a mathematical problem to a problem in linear algebra, you can
most likely solve it, provided that you know enough linear algebra. Therefore, a
thorough grounding in linear algebra is highly desirable. A sound undergraduate
education should offer a second course on the subject, at the senior level. I wrote this
book as a suitable text for such a course. The changes made in this second edition are
partly to make it more suitable as a text. Terse descriptions, especially in the early
chapters, were expanded, more problems were added, and a list of solutions to
selected problems has been provided.

In addition, quite a bit of new material has been added, such as the compactness
of the unit ball as a criterion of finite dimensionality of a normed linear space. A new
chapter discusses the QR algorithm for finding the eigenvalues of a self-adjoint
matrix. The Householder algorithm for turning such matrices into tridiagonal form is
presented. I describe in some detail the beautiful observation of Deift, Nanda, and
Tomei of the analogy between the convergence of the QR algorithm and Moser's
theorem on the asymptotic behavior of the Toda flow as time tends to infinity.

Eight new appendices have been added to the first edition's original eight,
including the Fast Fourier Transform, the spectral radius theorem, proved with the
help of the Schur factorization of matrices, and an excursion into the theory of
matrix-valued analytic functions. Appendix 11 describes the Lorentz group, 12 is an
interesting application of the compactness criterion for finite dimensionality, 13 is a
characterization of commutators, 14 presents a proof of Liapunov's stability
criterion, 15 presents the construction of the Jordan Canonical form of matrices, and
16 describes Carl Pearcy's elegant proof of Halmos' conjecture about the numerical
range of matrices.

I conclude with a plea to include the simplest aspects of linear algebra in high-
school teaching: vectors with two and three components, the scalar product, the
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Xii PREFACE

cross product, the description of rotations by matrices, and applications to geometry.
Such modernization of the high-school curriculum is long overdue.

I acknowledge with pleasure much help I have received from Ray Michalek, as
well as useful conversations with Albert Novikoff and Charlie Peskin. I also would
like to thank Roger Horn, Beresford Parlett, and Jerry Kazdan for very useful
comments, and Jeffrey Ryan for help in proofreading.

PETER D. LAX

New York. New York



Preface to the First Edition

This book is based on a lecture course designed for entering graduate students and
given over a number of years at the Courant Institute of New York University. The
course is open also to qualified undergraduates and on occasion was attended by
talented high school students, among them Alan Edelman; I am proud to have been
the first to teach him linear algebra. But, apart from special cases, the book, like the
course, is for an audience that has some-not much-familiarity with linear algebra.

Fifty years ago, linear algebra was on its way out as a subject for research. Yet
during the past five decades there has been an unprecedented outburst of new ideas
about how to solve linear equations, carry out least square procedures, tackle
systems of linear inequalities, and find eigenvalues of matrices. This outburst came
in response to the opportunity created by the availability of ever faster computers
with ever larger memories. Thus, linear algebra was thrust center stage in numerical
mathematics. This had a profound effect, partly good, partly bad, on how the subject
is taught today.

The presentation of new numerical methods brought fresh and exciting material,
as well as realistic new applications, to the classroom. Many students, after all, are in
a linear algebra class only for the applications. On the other hand, bringing
applications and algorithms to the foreground has obscured the structure of linear
algebra-a trend I deplore; it does students a great disservice to exclude them from
the paradise created by Emmy Noether and Emil Artin. One of the aims of this book
is to redress this imbalance.

My second aim in writing this book is to present a rich selection of analytical
results and some of their applications: matrix inequalities, estimates for eigenvalues
and determinants, and so on. This beautiful aspect of linera algebra, so useful for
working analysts and physicists, is often neglected in texts.

I strove to choose proofs that are revealing, elegant, and short. When there are
two different ways of viewing a problem, I like to present both.

The Contents describes what is in the book. Here I would like to explain my
choice of materials and their treatment. The first four chapters describe the abstract
theory of linear spaces and linear transformations. In the proofs I avoid elimination
of the unknowns one by one, but use the linear structure; I particularly exploit

xiii



AV PREFACE TO THE FIRST EDITION

quotient spaces as a counting device. This dry material is enlivened by some
nontrivial applications to quadrature, to interpolation by polynomials, and to solving
the Dirichlet problem for the discretized Laplace equation.

In Chapter 5, determinants are motivated geometrically as signed volumes of
ordered simplices. The basic algebraic properties of determinants follow immediately.

Chapter 6 is devoted to the spectral theory of arbitrary square matrices with
complex entries. The completeness of eigenvectors and generalized eigenvectors is
proved without the characteristic equation, relying only on the divisibility theory of
the algebra of polynomials. In the same spirit we show that two matrices A and B are
similar if and only if (A - kI)t and (B - kl)"' have nullspaces of the same
dimension for all complex k and all positive integer in. The proof of this proposition
leads to the Jordan canonical form.

Euclidean structure appears for the first time in Chapter 7. It is used in Chapter 8
to derive the spectral theory of selfadjoint matrices. We present two proofs, one
based on the spectral theory of general matrices, the other using the variational
characterization of eigenvectors and eigenvalues. Fischer's minmax theorem is
explained.

Chapter 9 deals with the calculus of vector- and matrix-valued functions of a
single variable, an important topic not usually discussed in the undergraduate
curriculum. The most important result is the continuous and differentiable character
of eigenvalues and normalized eigenvectors of differentiable matrix functions,
provided that appropriate nondegeneracy conditions are satisfied. The fascinating
phenomenon of "avoided crossings" is briefly described and explained.

The first nine chapters, or certainly the first eight, constitute the core of linear algebra.
The next eight chapters deal with special topics, to be taken up depending on the interest
of the instructor and of the students. We shall comment on them very briefly.

Chapter 10 is a symphony of inequalities about matrices, their eigenvalues, and
their determinants. Many of the proofs make use of calculus.

I included Chapter 11 to make up for the unfortunate disappearance of mechanics
from the curriculum and to show how matrices give an elegant description of motion
in space. Angular velocity of a rigid body and divergence and curl of a vector field all
appear naturally. The monotonic dependence of eigenvalues of symmetric matrices
is used to show that the natural frequencies of a vibrating system increase if the
system is stiffened and the masses are decreased.

Chapters 12, 13, and 14 are linked together by the notion of convexity. In Chapter
12 we present the descriptions of convex sets in terms of gauge functions and support
functions. The workhorse of the subject, the hyperplane separation theorem, is
proved by means of the Hahn-Banach procedure. Carathdodory's theorem on
extreme points is proved and used to derive the Konig-Birkhoff theorem on doubly
stochastic matrices; Helly's theorem on the intersection of convex sets is stated and
proved.

Chapter 13 is on linear inequalities; the Farkas-Minkowski theorem is derived
and used to prove the duality theorem, which then is applied in the usual fashion to a
maximum-minimum problem in economics, and to the minmax theorem of von
Neumann about two-person zero-sum games.



PREFACE TO THE FIRST EDITION XV

Chapter 14 is on normed linear spaces; it is mostly standard fare except for a dual
characterization of the distance of a point from a linear subspace. Linear mappings
of normed linear spaces are discussed in Chapter 15.

Chapter 16 presents Perron's beautiful theorem on matrices all of whose entries
are positive. The standard application to the asymptotics of Markov chains is
described. In conclusion, the theorem of Frobenius about the eigenvalues of matrices
with nonnegative entries is stated and proved.

The last chapter discusses various strategies for solving iteratively systems of
linear equations of the form Ax = b, A a self-adjoint, positive matrix. A variational
formula is derived and a steepest descent method is analyzed. We go on to present
several versions of iterations employing Chebyshev polynomials. Finally we
describe the conjugate gradient method in terms of orthogonal polynomials.

It is with genuine regret that I omit a chapter on the numerical calculation of
eigenvalues of self-adjoint matrices. Astonishing connections have been discovered
recently between this important subject and other seemingly unrelated topics.

Eight appendices describe material that does not quite fit into the flow of the text,
but that is so striking or so important that it is worth bringing to the attention of
students. The topics I have chosen are special determinants that can be evaluated
explicity, Pfaff's theorem, symplectic matrices, tensor product, lattices, Strassen's
algorithm for fast matrix multiplication, Gershgorin's theorem, and the multiplicity
of eigenvalues. There are other equally attractive topics that could have been chosen:
the Baker-Campbell-Hausdorff formula, the Kreiss matrix theorem, numerical
range, and the inversion of tridiagonal matrices.

Exercises are sprinkled throughout the text; a few of them are routine; most
require some thinking and a few of them require some computing.

My notation is neoclassical. I prefer to use four-letter Anglo-Saxon words like
"into," "onto" and "1-to-1," rather than polysyllabic ones of Norman origin. The
end of a proof is marked by an open square.

The bibliography consists of the usual suspects and some recent texts; in addition,
I have included Courant-Hilbert, Volume I, unchanged from the original German
version in 1924. Several generations of mathematicians and physicists, including the
author, first learned linear algebra from Chapter 1 of this source.

I am grateful to my colleagues at the Courant Institute and to Myron Allen at the
University of Wyoming for reading and commenting on the manuscript and for
trying out parts of it on their classes. I am grateful to Connie Engle and Janice Want
for their expert typing.

I have learned a great deal from Richard Bellman's outstanding book,
Introduction to Matrix Analysis; its influence on the present volume is considerable.
For this reason and to mark a friendship that began in 1945 and lasted until his death
in 1984, I dedicate this book to his memory.

PETER D. LAX

New York, New York





CHAPTER I

Fundamentals

This first chapter aims to introduce the notion of an abstract linear space to those
who think of vectors as arrays of components. I want to point out that the class of
abstract linear spaces is no larger than the class of spaces whose elements are arrays.
So what is gained by this abstraction?

First of all, the freedom to use a single symbol for an array; this way we can think
of vectors as basic building blocks, unencumbered by components. The abstract
view leads to simple, transparent proofs of results.

More to the point, the elements of many interesting vector spaces are not
presented in terms of components. For instance, take a linear ordinary differential
equation of degree n; the set of its solutions form a vector space of dimension n, yet
they are not presented as arrays.

Even if the elements of a vector space are presented as arrays of numbers, the
elements of a subspace of it may not have a natural description as arrays. Take, for
instance, the subspace of all vectors whose components add up to zero.

Last but not least, the abstract view of vector spaces is indispensable for infinite-
dimensional spaces; even though this text is strictly about finite-dimensional spaces,
it is a good preparation for functional analysis.

Linear algebra abstracts the two basic operations with vectors: the addition of
vectors, and their multiplication by numbers (scalars). It is astonishing that on such
slender foundations an elaborate structure can be built, with romanesque, gothic, and
baroque aspects. It is even more astounding that linear algebra has not only the right
theorems but also the right language for many mathematical topics, including
applications of mathematics.

A linear space X over afield K is a mathematical object in which two operations
are defined:

Addition, denoted by +, as in

(1)

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright `'! 2007 John Wiley & Sons, Inc.
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2 LINEAR ALGEBRA AND ITS APPLICATIONS

and assumed to be commutative:

x+y=y+x, (2)

and associative:

x+(y+z) = (x+y) +z,

and to form a group, with the neutral element denoted as 0:

x+0=x.

The inverse of addition is denoted by -:

x + (-x) =- x - x = 0.

EXERCISE I. Show that the zero of vector addition is unique.

(3)

(4)

(5)

The second operation is multiplication of elements of X by elements k of the
field K:

kx.

The result of this multiplication is a vector, that is, an element of X.
Multiplication by elements of K is assumed to be associative:

k(ax) = (ka)x (6)

and distributive:

k(x + y) = kx + ky, (7)

as well as

(a + b)x = ax + bx. (8)

We assume that multiplication by the unit of K, denoted as 1, acts as the identity:

These are the axioms of linear algebra. We proceed to draw some deductions:
Set b = 0 in (8); it follows from Exercise 1 that for all x

(9)

Ox=0. (10)
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Set a = 1, b = -1 in (8); using (9) and (10) we deduce that for all x

(-1)x = -x.

EXERCISE 2. Show that the vector with all components zero serves as the zero
element of classical vector addition.

In this analytically oriented text the field K will be either the field Fl of real
numbers or the field C of complex numbers.

An interesting example of a linear space is the set of all functions x(t) that satisfy
the differential equation

d2dt2x+x=0.

The sum of two solutions is again a solution, and so is the constant multiple of one.
This shows that the set of solutions of this differential equation form a linear space.

Solutions of this equation describe the motion of a mass connected to a fixed
point by a spring. Once the initial position x(0) = p and initial velocity drx(0) = v
are given, the motion is completely determined for all t. So solutions can be
described by a pair of numbers (p, v).

The relation between the two descriptions is linear; that is, if (p, v) are the initial
data of a solution x(t), and (q, w) the initial data of another solution y(t), then the
initial data of the solution x(t) + y(t) are (p + q, v + w) = (p, v) + (q, w). Similarly,
the initial data of the solution kx(t) are (kp, kv) = k(p, v).

This kind of relation has been abstracted into the notion of isomorphism.

Definition. A one-to-one correspondence between two linear spaces over the
same field that maps sums into sums and scalar multiples into scalar multiples is
called an isomorphism.

Isomorphism is a basic notion in linear algebra. Isomorphic linear spaces are
indistinguishable by means of operations available in linear spaces. Two linear
spaces that are presented in very different ways can be, as we have seen, isomorphic.

E x a m p l e s o f Linear S p a c e s . (i) Set of all row vectors: (a, , ... , an), aj in K;
addition, multiplication defined componentwise. This space is denoted as K".

(ii) Set of all real-valued functions f(x) defined on the real line, K = R.
(iii) Set of all functions with values in K, defined on an arbitrary set S.
(iv) Set of all polynomials of degree less than n with coefficients in K.

EXERCISE 3. Show that (i) and (iv) are isomorphic.

EXERCISE 4. Show that if S has n elements, (i) and (iii) are isomorphic.
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EXERCISE 5. Show that when K = 08, (iv) is isomorphic with (iii) when S
consists of n distinct points of R.

Definition. A subset Yof a linear space X is called a subspace if sums and scalar
multiples of elements of Y belong to Y.

Examples of Subspaces. (a) X as in Example (i), Y the set of vectors
(0,a2-..,a,,-I,0) whose first and last component is zero.

(b) X as in Example (ii), Y the set of all periodic functions with period 7r.
(c) X as in Example (iii), Y the set of constant functions on S.
(d) X as in Example (iv), Y the set of all even polynomials.

Definition. The sum of two subsets Y and Z of a linear space X, denoted as
Y + Z, is the set of all vectors of form y + z, y in Y, z in Z.

EXERCISE 6. Prove that Y + Z is a linear subspace of X if Y and Z are.

Definition. The intersection of two subsets Yand Z of a linear space X, denoted
as Y fl z, consists of all vectors x that belong to both Yand Z

EXERCISE 7. Prove that if Yand Z are linear subspaces of X, so is Y fl Z.

EXERCISE 8. Show that the set {0} consisting of the zero element of a linear
space X is a subspace of X. It is called the trivial subspace.

Definition. A linear combination of j vectors x, , .... x1 of a linear space is a
vector of the form

kixl k,,...,kJ E K.

EXERCISE 9. Show that the set of all linear combinations of x , , ... , xj is a
subspace of X, and that it is the smallest subspace of X containing x, , ... , x1. This is
called the subspace spanned by x, .... , xJ.

Definition. A set of vectors x, , ... , x, in X span the whole space X if everyx in
X can be expressed as a linear combination of x,, ... ,x,,,.

Definition. The vectors x,,...,xj are called linearly dependent if there is a
nontrivial linear relation between them, that is, a relation of the form

=0,

where not all k, , ... , kJ are zero.
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Definition. A set of vectors x1,. .. , xj that are not linearly dependent is called
linearly independent.

EXERCISE 10. Show that if the vectors xi , ... , xj are linearly independent, then
none of the x; is the zero vector.

Lemma 1. Suppose that the vectors xi, ... , x,, span a linear space X and that the
vectors y1, . . . , y, in X are linearly independent. Then

j < n.

Proof. Since x1,...,x span X, every vector in X can be written as a linear
combination of xi,...,x,,. In particular, yi:

y,

Since yi # 0 (see Exercise 10), not all k are equal to 0, say k, # 0. Then xi can be
expressed as a linear combination of yi and the remaining x,. So the set consisting of
the x's, with xi replaced by yj span X. If j > n, repeat this step n - 1 more times and
conclude that yi, ... , y span X: if j > n, this contradicts the linear independence of
the y's f o r then y , . . .

Definition. A finite set of vectors which span X and are linearly independent is
called a basis for X.

Lemma 2. A linear space X which is spanned by a finite set of vectors x, ... , x
has a basis.

Proof If x1, ... ,x are linearly dependent, there is a nontrivial relation between
them; from this one of the xi can be expressed as a linear combination of the rest. So
we can drop that xi. Repeat this step until the remaining xj are linear independent:
they still span X, and so they form a basis.

Definition. A linear space X is called finite dimensional if it has a basis.

A finite-dimensional space has many, many bases. When the elements of the
space are represented as arrays with n components, we give preference to the special
basis consisting of the vectors that have one component equal to 1, while all the
others equal 0.

Theorem 3. All bases for a finite-dimensional linear space X contain the same
number of vectors. This number is called the dimension of X and is denoted as

dim X.
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Proof. Let x,, ... , x be one basis, and let yl, ... , ybe another. By Lemma I and
the definition of basis we conclude that m < n, and also n < m. So we conclude that
n and m are equal.

We define the dimension of the trivial space consisting of the single element 0 to
be zero.

Theorem 4. Every linearly independent set of vectors y, , ... , yj in a finite-
dimensional linear space X can be completed to a basis of X.

Proof. If y, , ... , }7 do not span X, there is some x, that cannot be expressed as a
linear combination of y,.... , y,. Adjoin this x, to the y's. Repeat this step until the
y's span X. This will happen in less than n steps, n = dim X, because otherwise X
would contain more than n linearly independent vectors, impossible for a space of
dimension n.

Theorem 4 illustrates the many different ways of forming a basis for a linear
space.

Theorem 5. (a) Every subspace Y of a finite-dimensional linear space X is
finite dimensional.

(b) Every subspace Y has a complement in X, that is, another subspace Z such
that every vector x in X can be decomposed uniquely as

x=y+z, yinY,zinZ. (11)

Furthermore

dimX = dim Y + dim Z. (11)'

Proof. We can construct a basis in Y by starting with any nonzero vector yl, and
then adding another vector Y2 and another, as long as they are linearly independent.
According to Lemma 1, there can be no more of these yi than the dimension of X. A
maximal set of linearly independent vectors y,, ... , yj in Y spans Y, and so forms a
basis of Y According to Theorem 4, this set can be completed to form a basis of X by
adjoining Zj+, , ... , Z,,. Define Z as the space spanned by Zj+, , ... , Z,,; clearly Yand
Z are complements, and

dimX =n=j+(n-j) =dimY+dimZ.

Definition. X is said to be the direct sum of two subspaces Y and Z that are
complements of each other. More generally X is said to be the direct sum of its
subspaces Y,, ... , Y. if every x in X can be expressed uniquely as

x=yI YiinYj, (12)
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This relation is denoted as

X=Y,®...(Dy,,

EXERCISE 11. Prove that if X is finite dimensional and the direct sum of
Y,, ... , Y,,,, then

dim X = E dim Yp (12)'

Definition. An (n - 1)-dimensional subspace of an n-dimensional space is
called a hyperplane.

EXERCISE 12. Show that every finite-dimensional space X over K is isomorphic
to K", n = dim X. Show that this isomorphism is not unique when n is > 1.

Since every n-dimensional linear space over K is isomorphic to K", it follows that
two linear spaces over the same field and of the same dimension are isomorphic.

Note: There are many ways of forming such an isomorphism; it is not unique.
The concept of congruence modulo a subspace, defined below, is a very useful

tool.

Definition. For X a linear space, Ya subspace, we say that two vectors x, , x2 in X
are congruent modulo Y, denoted

x, x2 mod Y,

if X, - X2 E Y. Congruence mod Y is an equivalence relation, that is, it is

(i) symmetric: if x, = x2, then x2 - x1.
(ii) reflexive: x = x for all x in X.

(iii) transitive: if x, - X2, X2 = X3, then x, - x3.

EXERCISE 13. Prove (i)-(iii) above. Show furthermore that if x, = x2, then
kx, - kx2 for every scalar k.

We can divide elements of X into congruence classes mod Y The congruence
class containing the vector x is the set of all vectors congruent with X; we denote it
by {x}.

EXERCISE 14. Show that two congruence classes are either identical or disjoint.

The set of congruence classes can be made into a linear space by defining addition
and multiplication by scalars, as follows:

{x} + {z} = {x + z}
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and

k{x} = {kx}.

That is, the sum of the congruence class containing x and the congruence
class containing z is the class containing x + z. Similarly for multiplication by
scalars.

EXERCISE 15. Show that the above definition of addition and multiplication
by scalars is independent of the choice of representatives in the congruence
class.

The linear space of congruence classes defined above is called the quotient space
of X mod Y and is denoted as

X(mod Y) or X/Y.

The following example is illuminating: Take X to be the linear space of all row
vectors (a1,...,an) with n components, and take Y to be all vectors
y = (0, 0, a3, ... , whose first two components are zero. Then two vectors are
congruent mod Yiff their first two components are equal. Each equivalence class can
be represented by a vector with two components, the common components of all
vectors in the equivalence class.

This shows that forming a quotient space amounts to throwing away information
contained in those components that pertain to Y. This is a very useful simplification
when we do not need the information contained in the neglected components.

The next result shows the usefulness of quotient spaces for counting the

dimension of a subspace.

Theorem 6. Y is a subspace of a finite-dimensional linear space X; then

dim Y + dim(X/Y) = dim X. (13)

Proof. Let yi , ... , yj be a basis for Y, j = dim Y. According to Theorem 4, this set
can be completed to form a basis for X by adjoining xj;.1, ... , x,,, n = dim X. We
claim that

(13)'

form a basis for X/Y. To show this we have to verify two properties of the cosets
(13)':

(i) They span X/Y.
(ii) They are linearly independent.
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(i) Since yl,... ,x form a basis for X, every x in X can be expressed as

x = aiyi + E bkXk.

It follows that

{x} = E bk{xk}.

(ii) Suppose that

ECk{Xk} = 0.

This means that

E CkXk = Y, yin Y.

Express y as E diyi; we get

Eckxk-diyi=0.

9

Since yl, ... , x,, form a basis, they are linearly independent, and so all the ck and di
are zero.

It follows that

dimX/Y=# ofxk=n -j.

So

dim Y + dim X/Y = j + n - j = n = dim X. O

EXERCISE 16. Denote by X the linear space of all polynomials p(t) of degree
< n, and denote by Y the set of polynomials that are zero at t I, ... , tj, j < n.

(i) Show that Y is a subspace of X.
(ii) Determine dim Y.

(iii) Determine dim X/Y.

The following corollary is a consequence of Theorem 6.

Corollary 6'. A subspace Y of a finite-dimensional linear space X whose
dimension is the same as the dimension of X is all of X.
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EXERCISE 17. Prove Corollary 6.

Theorem 7. Suppose X is a finite-dimensional linear space, U and V two
subspaces of X such that X is the sum of U and V:

X=U+V.

Denote by W the intersection of U and V:

W=UnV.

Then

dim X = dim U + dim V - dim W. (14)

Proof. When the intersection W of U and V is the trivial space {0}, dim W = 0,
and (14) is relation (11)' of Theorem 5. We show now how to use the notion of
quotient space to reduce the general case to the simple case dim W = 0.

Define Uo = U/W, Vo = V/W; then Uo f1 Vo = {0}, and so Xo = X/W satisfies

Xo = Uo + Vo.

So according to (11)',

dim Xo = dim Uo + dim Vo. (14)'

Applying (13) of Theorem 6 three times, we get

dim Xo = dim X - dim W, dim U0 = dim U - dim W,

dim Vo = dim V - dim W.

Setting this into relation (14)' gives (14). O

Definition. The Cartesian sum of two linear spaces over the same field is the set
of pairs

(xI,x2); x, in X,,x2 in X2,

where addition and multiplication by scalars is defined componentwise. The direct
sum is denoted as

X1 ®X2.

It is easy to verify that X, ® X2 is indeed a linear space.
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EXERCISE 18. Show that

dim X, G) X2 = dim X, + dim X2.

EXERCISE 19. X a linear space, Ya subspace. Show that Y ® X/Y is isomorphic
to X.

Note: The most frequently occurring linear spaces in this text are our old friends
I8" and C", the spaces of vectors (a, , ... , a,,) with n real, respectively complex,
components.

So far the only means we have for showing that a linear space X is finite
dimensional is to find a finite set of vectors that span it. In Chapter 7 we present
another, powerful criterion for a Euclidean space to be finite dimensional. In Chapter
14 we extend this criterion to all normed linear spaces.

We have been talking about sets of vectors being linearly dependent or
independent, but have given no indication how to decide which is the case. Here is an
example:

Decide if the four vectors

l 1 2 2

1 -1 1 -1
0 ' 1 ' 1 ' 2

1 3 3

are linearly dependent or not. That is, are there four numbers k,, k2, k3, k4, not all
zero, such that

1 1 2 2 0

k,
1

+k2
-1

+k3 +k4
-1

=
0

0 1 0 0
1 1 3 3 0

This vector equation is equivalent to four scalar equations:

k, + k2 + 2k3 + 2k4 = 0,

k,-k2+k3-k4=0,
k2 + k3 = 0,

k,+k2+3k3+3k4=0.

(15)

The study of such systems of linear equations is the subject of Chapters 3 and 4.
There we describe an algorithm for finding all solutions of such systems of
equations.
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EXERCISE 20. Which of the following sets of vectors x = (x1, . . . , x") in 08" are a
subspace of U8"? Explain your answer.

(a) All x such that x, > 0.
(b) All x such that x, + x2 = 0-
(c) All x such that x, + x2 + 1 = 0.
(d) All x such that x, = 0.
(e) All x such that x, is an integer.

EXERCISE 2I. Let U. V, and W be subspaces of some finite-dimensional vector
space X. Is the statement

dim(U + V + W) = dim U + dim V + dim W - dim(U n V) - dim(U n W)

- dim(V n W) + dim(U n V n W),

true or false? If true, prove it. If false, provide a counterexample.



CHAPTER 2

Duality

Readers who are meeting the concept of an abstract linear space for the first time
may balk at the notion of the dual space as piling an abstraction on top of an
abstraction. I hope that the results presented at the end of this chapter will convince
such skeptics that the notion is not only natural but useful for expeditiously deriving
interesting concrete results. The dual of a nonmed linear space, presented in Chapter
14, is a particularly fruitful idea.

The dual of an infinite-dimensional normed linear space is indispensable for their
study.

Let X be a linear space over a field K. A scalar valued function 1,

I:X - K,

defined on X, is called linear if

l (X + y) = I(x) + 1(y)

for all x, y in X, and

l(kx) = kl(x)

(1)

for all x in X and all k in K. Note that these two properties, applied repeatedly, show
that

l(ktxt + + ktl(xi) + +

We define the sum of two functions by pointwise addition; that is,

(1 + in) (x) = l(x) + m(x).

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright 2007 John Wiley & Sons, Inc.
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Multiplication of a function by a scalar is defined similarly. It is easy to verify that
the sum of two linear functions is linear, as is the scalar multiple of one. Thus the set
of linear functions on a linear space X itself forms a linear space, called the dual of X
and denoted by V.

EXAMPLE I. X = {continuous functions f(s),0 < s < 1}. Then for any point
s, in [0, 1],

l(f) =f(sl)
is a linear function. So is

I(f) _ kif(si),

where sj is an arbitrary collection of points in [0, 1], kj arbitrary scalars. So is

1I(f) = 1 f(s)ds.
0

EXAMPLE 2. X = {Differentiable functions f on 10, 1]}. For s in [0, 1],

It

1(f) _ a;aJf(s)

is a linear function, where a- denotes the jth derivative.

Theorem 1. Let X be a linear space of dimension n. The elements x of X can be
represented as arrays of n scalars:

X = (c,,...,cn), (3)

Addition and multiplication by a scalar is defined componentwise. Let a, , . . . , an be
any array of n scalars; the function l be defined by

(4)

is a linear function of x. Conversely, every linear function I of x can be so
represented.

Proof. That l(x) defined by (4) is a linear function of x is obvious. The converse is
not much harder. Let I be any linear function defined on X. Define xj to be the vector
whose jth component is 1, with all other components zero. Then x defined by (3) can
be expressed as

x = c,x, + + cnxn.

Denote 1(x1) by aj; it follows from formula (1)" that l is of form (4).
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Theorem 1 shows that if the vectors in X are regarded as arrays of it scalars, then
the elements I of X' can also be regarded as arrays of n scalars. It follows from (4)
that the sum of two linear functions is represented by the sum of the two arrays
representing the summands.

Similarly, multiplication of 1 by a scalar is accomplished by multiplying each
component. We deduce from all this the following theorem.

Theorem 2. The dual X' of a finite-dimensional linear space X is a finite-
dimensional linear space, and

dim X= dim X.

The right-hand side of (4) depends symmetrically on the two arrays representing
x and 1. Therefore we ought to write the left-hand side also symmetrically, we
accomplish that by the scalar product notation

(l X)def = 1(X).
(5)

We call it a product because it is a bilinear function of l and x: for fixed lit is a linear
function of x, and for fixed x it is a linear function of 1.

Since X' is a linear space, it has its own dual X" consisting of all linear functions
on X. For fixed x, (1, x) is such a linear function. By Theorem 1, all linear functions
are of this form. This proves the following theorem.

Theorem 3. The bilinear function (1, x) defined in (5) gives a natural
identification of X with X".

EXERCISE I. Given a nonzero vectorxi in X, show that there is a linear function I
such that

l(xi) 0 0.

Definition. Let Ybe a subspace of X. The set of linear functions /that vanish on
Y, that is, satisfy

1(y) = 0 for all yin Y, (6)

is called the annihilator of the subspace Y; it is denoted by Yl.

EXERCISE 2. Verify that Yl is a subspace of X'.

Theorem 4. Let Y be a subspace of a finite-dimensional space X, Yl its
annihilator. Then

dim Yl + dim Y = dim X. (7)
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Proof. We shall establish a natural isomorphism between Y1 and the dual (X/Y)'
of X/Y. Given 1 in Y1 we define L in (X/Y)' as follows: for any congruence class {x}
in X/Y, we define

L{x} = 1(x). (8)

It follows from (6) that this definition of L is unequivocal, that is, does not depend on
the element x picked to represent the class.

Conversely, given any L in (X/Y)', (8) defines a linear function I on X that
satisfies (6). Clearly, the correspondence between I and L is one-to-one and an
isomorphism. Thus since isomorphic linear spaces have the same dimension,

dim Y1 = dim(X/Y)'.

By Theorem 2, dim(X/Y)' = dimX/Y, and by Theorem 6 of Chapter 1,

dim X/Y = dim X - dim Y, so Theorem 4 follows. 0

The dimension of Y1 is called the codimension of Y as a subspace of X. By
Theorem 4,

codim Y + dim Y = dim X.

Since Y' is a subspace of X', its annihilator, denoted by Y11, is a subspace
of X".

Theorem 5. Under the identification (5) of X" and X, for every subspace Yof a
finite-dimensional space X,

Y11 = Y

Proof. It follows from definition (6) of the annihilator of Ythat ally in Y belong to
Y11, the annihilator of Y'. To show that Yis all of Y11, we make use of (7) applied
to X' and its subspace Y1:

dim Y11 + dim Y1 = dim X. (7)'

Since dim X'= dim X, it follows by comparing (7) and (7)' that

dim Y11 = dim Y.

So Y is a subspace of Y11 that has the same dimension as Y11; but then according to
Corollary 6' in Chapter 1, Y = Y11. El
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The following notion is useful:

Definition. Let X be a finite-dimensional linear space, and let S be a subset of
X. The annihilator Sl of S is the set of linear functions I that are zero at all vectors
s of S:

Theorem 6. Denote by Y the smallest subspace containing S:

S1=Yl.
EXERCISE 3. Prove Theorem 6.

According to formalist philosophy, all of mathematics is tautology. Chapter 2
might strike the reader-as it does the author-as quintessential tautology. Yet even
this trivial-looking material has some interesting consequences:

I(s) = 0 for s in S.

17

Theorem 7. Let I be an interval on the real axis, ti,... , t n distinct points.
Then there exist n numbers in 1, ... , in,, such that the quadrature formula,

I p(t)dt = mip(ti) + . + (9)

holds for all polynomials p of degree less than n.

Proof. Denote by X the space of all polynomials p(t) = ao + alt + + a"_ i t"-
of degree less than n. Since X is isomorphic to the space (ao,al,...,a"_i) _
R'1, dim X = n. We define lj as the linear function

lj(p) = p(tj) (10)

The Ij are elements of the dual space of X; we claim that they are linearly
independent. For suppose there is a linear relation between them:

cl11 (11)

According to the definition of the lj, (11) means that

cip(ti) + ... + cnp(4,) = 0 (12)

for all polynomials p of degree less than n. Define the polynomial qk as the product

qk(t)=fl(t-ti).
j#k

Clearly, qk is of degree n - 1, and is zero at all points tj, j # k. Since the points tj are
distinct, qk is nonzero at tk. Set p = qk in (12); since gk(tj) = 0 for j # k, we obtain
that ckgk(tk) = 0; since qk(tk) is not zero, Ck must be. This shows that all coefficients
ck are zero, that is, that the linear relation (11) is trivial. Thus the 11.j = 1, ... , n are n
linearly independent elements of V. According to Theorem 2, dim X' = dim X = n;
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therefore the Ij form a basis of V. This means that any other linear function 1 on X
can be represented as a linear combination of the Ij:

I =mill

The integral of p over I is a linear function of p; therefore it can be represented as
above. This proves that given any n distinct points ti, ... , tn, there is a formula of
form (9) that is valid for all polynomials of degree less than n.

EXERCISE 4. In Theorem 6 take the interval I to be [-1, 1], and take n to be 3.
Choose the three points to be t1 = -a, t2 = 0, and t3 = a.

(i) Determine the weights in,,m2im3 so that (9) holds for all polynomials of
degree <3.

(ii) Show that for a> 1 /3, all three weights are positive.

(iii) Show that for a = 3/5, (9) holds for all polynomials of degree <6.

EXERCISE 5. In Theorem 6 take the interval I to be [-1, 1 ], and take n = 4.
Choose the four points to be -a, -b, b, a.

(i) Determine the weights mi , m2, m3, and m4 so that (9) holds for all
polynomials of degree <4.

(ii) For what values of a and b are the weights positive?

EXERCISE 6. Let P2 be the linear space of all polynomials

p(x) = ao + aix + a2x2

with real coefficients and degree < 2. Let i'i , 42, 43 be three distinct real numbers, and
then define

ej = P(j) for j= 1,2,3.

(a) Show that fl, Q2, e3 are linearly independent linear functions on P2.
(b) Show that el,12, e3 is a basis for the dual space P.
(c) (1) Suppose lei, . . . , en} is a basis for the vector space V. Show there exist

linear functions (ei.... en} in the dual space V defined by

1 ifi=j,
+(ei) 0 if i 54 j,

Show that {L1, ... , en} is a basis of V', called the dual basis.
(2) Find the polynomials P1 (x),p2(x),P3(x) in P2 for which Qi,Q2, e3 is the

dual basis in P.

EXERCISE 7. Let W be the subspace of 684 spanned by (1, 0, -1, 2) and (2, 3,
1, 1).
Which linear functions e(x) = cixi + c2x2 + c3x3 + C4X4 are in the annihilator of W?



CHAPTER 3

Linear Mappings

Chapter 3 abstracts the concept of a matrix as a linear mapping of one linear space
into another. Again I point out that no greater generality is achieved, so what has
been gained?

First of all, simplicity of notation; we can refer to mappings by single symbols,
instead of rectangular arrays of numbers. The abstract view leads to simple,
transparent proofs. This is strikingly illustrated by the proof of the associative law of
matrix multiplication and by the proof of the basic result that the column rank of a
matrix equals its row rank.

Many important mappings are not presented in matrix form; see, for example, the
first two applications presented in this chapter.

Last but not least, the abstract view is indispensable for infinite-dimensional
spaces. There the view of mappings as infinite matrices has held up progress until it
was replaced by an abstract concept.

A mapping from one set X into another set U is a function whose arguments are
points of X and whose values are points of U:

f (X) = U.

In this chapter we discuss a class of very special mappings:

(i) Both X, called the domain space, and U, called the target space, are linear
spaces over the same field.

(ii) A mapping T: X U is called linear if it is additive, that is, satisfies

T(x+))=T(x)+T(y)

for all x, y in X, and if it is homogeneous, that is, satisfies

T(kx) = kT(x)

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright 2007 John Wiley & Sons, Inc.
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for all x in X and all k in K. The value of Tat x is written multiplicatively as
Tx; the additive property becomes the distributive law: T(x + y) = Tx + Ty.

Other names for linear mapping are linear transformation and linear operator.

Example 1. Any isomorphism.

Example 2. X = U polynomials of degree less than n in s; T = d/ds.

Example 3. X = U = 082, T rotation around the origin by angle 0.

Example 4. X any linear space, U the one dimensional space K, T any linear
function on X.

Example S. X = U = Differentiable functions, T linear differential operator.

Example 6. X = U = Co(08), (Tf)(x) = f f(y)(x- y)2dy.

Example 7. X = 08", U = 08', u = Tx defined by

u+ tljxj, M.

Here u = (UI,...,u",),x=

Theorem 1. (a) The image of a subspace of X under a linear map T is a
subspace of U.

(b) The inverse image of a subspace of U, that is the set of all vectors in X
mapped by T into the subspace, is a subspace of X.

EXERCISE I. Prove Theorem 1.

Definition. The range of T is the image of X under T; it is denoted as RT. By
part (a) of Theorem 1, it is a subspace of U.

Definition. The nullspace of T is the set X mapped into 0 by T: Tx = 0; it is
denoted as NT. By part (b) of Theorem 1, it is a subspace of X.

The following result is a workhorse of the subject, a fundamental result about
linear maps.

Theorem 2. Let T: X --, U be a linear map; then

dim NT + dim RT = dim X.
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Proof Since T maps NT into 0, Tx, = Tx2 when x, and x2 are equivalent mod NT.
So we can define T acting on the quotient space XINT by setting

T{x}. = Tx.

T is an isomorphism between X/NT and RT; since isomorphic spaces have the same
dimension,

dim X/NT = dim RT.

According to Theorem 6 of Chapter 1, dim X/N = dim X - dim N; combined with
the relation above we get Theorem 2. O

Corollaries. A Suppose dim U < dim X; then

Tx=O for some x 0.

B Suppose dim U = dimX and the only vector satisfying Tx = 0 is x = 0. Then

RT = U.

Proof. A dim RT < dim U < dim X; it follows therefore from Theorem 2 that
dim NT > 0, that is, that NT contains some vector not equal to 0.

B By hypothesis, NT = {0}, so dim NT = 0. It follows then from Theorem 2 and
from the assumption in B that

dim RT = dim X = dim U.

By Corollary 6' of Chapter 1, a subspace whose dimension is the dimension of the
whole space is the whole space; therefore RT = U. O

Theorem 2 and its corollaries have many applications, possibly more
than any other theorem of mathematics. It is useful to have concrete versions of
them.

Corollary A'. X = R", U = 08', rn < n. Let T be any mapping of 08" -f 08' as
in Example 7; since m = dim U < dim X = n, by Corollary A, the system of linear
equations

=0, i= 1,...,m (1)

has a nontrivial solution, that is one where at least one xi 54 0.
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Corollary B'. X = 18", U = U8", T given by

tuxi =ui, i= I,...,n. (2)

If the homogeneous system of equations

tjx1 = 0, i = 1,...,n (3)

has only the trivial solution x, = = x = 0, then the inhomogeneous system (2)
has a solution f o r all u, , . . . , u,,. Since the homogeneous system (3) has only the
trivial solution, the solution of (2) is uniquely determined.

Application I. Take X equal to the space of all polynomials p(s) with complex
coefficients of degree less than n, and take U = U. We choose s,.... ,s,, as n
distinct complex numbers, and define the linear mapping T: X -# U by

Tp = (p(SI ), ....P(s"))

We claim that NT is trivial; for Tp = 0 means that p(s,) = 0,... , p(.s,,) = 0, that is,
that p has zeros at s, , ... , s,,. But a polynomial p of degree less than n cannot have n
distinct zeros, unless p - 0. Then by Corollary B, the range of T is all of U; that is,
the values of p at s,, ... , s,, can be prescribed arbitrarily.

Application 2. X is the space of polynomials with real coefficients of degree
< n, U = 118". We choose n pairwise disjoint intervals S1,. .. , S,, on the real axis. We
define Ti to be the average value of p over Sj:

_ 1 l
Pi = I I p(s)ds, JSjI = length of S;. (4)

SJ

We define the linear mapping T: X U by

Tp = (p,,...,p").

We claim that the nullspace of T is trivial; for, if pj = 0, p changes sign in Sj and so
vanishes somewhere in S. Since the Sj are pairwise disjoint, p would have n distinct
zeros, too many for a polynomial of degree less than n. Then by Corollary B the
range of T is all of U; that means that the average values of p over the intervals
S,, ... , S,, can be prescribed arbitrarily.
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Application 3. In constructing numerical approximations to solutions of the
Laplace equation in a bounded domain G of the plane,

Au=u,,+u,.,,=0 in G, (5)

with u prescribed on the boundary of G, one fills G, approximately, with a lattice and
replaces the second partial derivatives with centered differences:

u
uw

h'-

uyy -
h2

where

W

N

I£

S

and h is the mesh spacing. Setting (6) into (5) gives the following relations:

uW+UN+uE+US
un =

4

(6)

(7)

This equation relates the value u of u at each lattice point 0 in the domain G to the
values of a at the four lattice neighbors of u. In case any lattice neighbor of 0 lies
outside G, we set the value of u there equal to the boundary value of u at the nearest
boundary point. The resulting set of equations (7) is a system of n equations for n
unknowns of the form (2); n is equal to the number of lattice points in G.

We claim that the corresponding homogeneous equations have only the trivial
solution u = 0 for all lattice points. The homogeneous equations correspond to
taking the boundary values to be zero. Now take any solution of the homogeneous
equations and denote by umax the maximal value of u over all lattice points in G.
That maximum is assumed at some point 0 of G; it follows from (7) that then
u = umax at all four lattice neighbors of 0. Repeating this argument we eventually
reach a lattice neighbor which falls outside G. Since u was set to zero at all such
points, we conclude that u,nax = 0. Similarly we show that um;,, = 0; together these
imply that uO = 0 for all lattice points for a solution of the homogeneous equation.
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By Corollary B', the system of equations (7), with arbitrary boundary data, has a
unique solution.

EXERCISE 2. Let

tijxj = Ui, i = 1,...,m

be an overdetermined system of linear equations-that is, the number m of equations
is greater than the number n of unknowns xj, . . . , x,,. Take the case that in spite of the
overdeterminacy, this system of equations has a solution, and assume that this
solution is unique. Show that it is possible to select a subset of n of these equations
which uniquely determine the solution.

We turn now to the rudiments of the algebra of linear mappings, that is, their
addition and multiplication. Suppose that T and S are both linear maps of X -> U;
then we define their sum T + S by setting for each vector x in X,

(T + S) (x) = Tx + Sx.

Clearly, under this definition T + S is again a linear map of X - U. We define kT
similarly, and we get another linear map.

It is not hard to show that under the above definition the set of linear mappings of
X -> U themselves forms a linear space. This space is denoted by L(X, U).

Let T, S be maps, not necessarily linear, of X into U, and U into V, respectively, X,
U, V arbitrary sets. Then we can define the composition of T with S, a mapping of X
into Vobtained by letting T act first, followed by S, schematically

V'-U- X.

The composite is denoted by S o T:

S o T(x) = S(T(x)).

Note that composition is associative: if R maps V into Z, then

Ro(SoT)=(RoS)oT.

Theorem 3. (i) The composite of linear mappings is also a linear mapping.
(ii) Composition is distributive with respect to the addition of linear maps, that is,

(R+S)oT=RoT+SoT
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and

So(T+P)=SoT+SoP,
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where R and S map U- V and P and T map X U.

EXERCISE 3. Prove Theorem 3.

On account of this distributive property, coupled with the associative law that
holds generally, composition of linear maps is denoted as multiplication:

SoT ST.

We warn the reader that this kind of multiplication is generally not commutative; for
example, TS may not even be defined when ST is, much less equal to it.

Example 8. X = U = V = polynomials in s, T = d/dc, S = multiplication
by s.

Example 9. X = U = V = R3.

S: rotation around x, axis T: rotation around x2 axis
by 90 degrees by 90 degrees

EXERCISE 4. Show that S and T in Examples 8 and 9 are linear and that
ST : IS.

Definition. A linear map is called invertible if it is 1-to-1 and onto, that is, if it is
an isomorphism. The inverse is denoted as T-I.

EXERCISE 5. Show that if T is invertible, T T- 1 is the identity.

Theorem 4. (i) The inverse of an invertible linear map is linear.
(ii) If S and T are both invertible, and if ST is defined, then ST also is invertible,

and

(ST)-' = T-'S-

EXERCISE 6. Prove Theorem 4.

Let T be a linear map X - U, and l a linear function, that is, I is an element of V.
Then the product (i.e., composite) IT is a linear mapping of X into K, that is, an
element of X'; denote this element by in:

m(x) = l(Tx). (8)
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This defines an assignment of an element m of X' to every element I of V. It is easy
to deduce from (8) that this assignment is a linear mapping U' -+ X'; it is called the
transpose of T and is denoted by V.

Using the notation (6) in Chapter 2 to denote the value of a linear function, we can
rewrite (8) as

(m,x) _ (1, Tx). (8')

Using the notation m = T'1, this can be written as

(T'1, x) = (1,Tx). (9)

EXERCISE 7. Show that whenever meaningful,

(ST)'=TS', (T+ R)'=T'+R' and (T-')'=(T')-I.

Example 10. X = I8", U = Rm, T as in Example 7.

U,=Etjxj. (10)

U' is then also 118',X' = 118", with (1, u) = Ei l;u;, (m, x) = E' mixi. Then with
u = Tx, using (10) we have

(1, U) _ 1,u; _ litiixl
r i

l/t'i/xi=>mixi=(m,x),

where m = T'l, with

nti = l;ty.

EXERCISE 8. Show that if X" is identified with X and U" with U via (5) in
Chapter 2, then

T" = T.

We shall show in Chapter 4 that if a mapping T is interpreted as a matrix, its
transpose T' is obtained by making the columns of T the rows of T'.

We recall from Chapter 2 the notion of the annihilator of a subspace.
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Theorem 5. The annihilator of the range of T is the nullspace of its transpose:

RT = NT,. (12)

Proof. By the definition in Chapter 2 of annihilator, the annihilator of the range
RT consists of those linear functions I defined on the target space U for which

(!, u) = 0 for all u in RT.

Since u in RT consists of u = Tx, x in X, we can rewrite the above as

(l, Tx) = 0 for all x.

Using (9), we can rewrite this as

(T'!, x) = 0 for all x.

It follows that l is in RT iff T'l = 0; this proves Theorem 5.

Now take the annihilator of both sides of (12). According to Theorem 5 of
Chapter 2, the annihilator of Rl is R itself. In this way we obtain the following
theorem.

Theorem 5'. The range of T is the annihilator of the nullspace of V.

RT = NT,.
(12)'

(12)' is a very useful characterization of the range of a mapping. Next we give
another consequence of Theorem 5.

Theorem 6.

dim RT = dim RT'. (13)

Proof We apply Theorem 4 of Chapter 2 to U and its subspace RT:

dim RT + dim RT = dim U.

Next we use Theorem 2 of this chapter applied to T': U' X':

dim NT, + dim Rr = dim U'.

According to Theorem 2, Chapter 2, dim U = dim U'; according to Theorem 5 of
this chapter, RT = and so dim RT = dim N. So we deduce (13) from the last
two equations.
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The following is an easy consequence of Theorem 6.

Theorem 6'. Let T be a linear mapping of X into U, and assume that X and U
have the same dimension. Then

dim NT =dimNr. (13)'

Proof. According to Theorem 2, applied to both T and T',

dim NT = dim X - dim RT,

dim Nr = dim U' - dim Rr.

Since dim U = dim U' is assumed to be the same as dim X, (13)' follows from the
above relations and (13). Fl

Theorem 6 is an abstract version of the classical result that the column rank and
row rank of a matrix are equal. The usual proofs of this result are abstruse and
unclear.

We turn now to linear mappings of a linear space X into itself. The aggregate of
such mappings is denoted as 2'(X, X); they are a particularly important and
interesting class of maps. Any two such maps can be added and multiplied, that is,
composed, and can be multiplied by a scalar. Thus .f(X, X) is an algebra. We
investigate now briefly some of the algebraic aspects of £(X, X).

First we remark that .Y'(X, X) is an associative, but not commutative algebra, with
a unit; the role of the unit is played by the identity map I, defined by Ix = x. The zero
map 0 is defined by Ox = 0. £ (X, X) contains divisors of zero, that is, pairs of
mappings S and T whose product ST is 0, but neither of which is 0. To see this,
choose T to be any nonzero mapping with a nontrivial nullspace NT, and S to be any
nonzero mapping whose range Rs is contained in NT. Clearly, TS = 0.

There are mappings D # 0 whose square D2 is zero. As an example, take X to be
the linear space of polynomials of degree less than 2. Differentiation D maps this
space into itself. Since the second derivative of every polynomial of degree less than
2 is zero, D2 = 0, but clearly D # 0.

EXERCISE 9. Show that if A in ,Y'(X, X) is a left inverse of B in Y(X, X), that is
AB = 1, then it is also a right universe: BA = 1.

We have seen in Theorem 4 that the product of invertible elements is invertible.
Therefore the set of invertible elements of Y(X,X) forms a group under
multiplication. This group depends only on the dimension of X, and the field K of
scalars. It is denoted as GL(n, K), n = dim X.

Given an invertible element S of 2(X, X), we assign to each M in Y (X, X) the
element Ms constructed as follows:

Ms = SMS-1. (14)
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This assignment M -> Ms is called a similarity transformation; M is said to be
similar to Ms.

Theorem 7. (a) Every similarity transformation is an automorphism of L(X,X),
maps sums into sums, products into products, scalar multiples into scalar
multiples:

(kM)s = kMs. (15)

(M + K)s = Ms + Ks. (15)'

(MK)s = MSKs. (15)

(b) The similarity transformations form a group.

(MS)T = MTS. (16)

Proof (15) and (15)' are obvious; to verify (15)" we use the definition (14):

MSK5 = SMS-' SKS-' = SMKS-' = (MK)s,

where we made use of the associative law.
The verification of (16) is analogous; by (14),

(Ms)T = T(SMS-')T-1 = TSM(TS)-' = MTS;

here we made use of the associative law, and that (TS)-1 = S-'T-1. O

Theorem 8. Similarity is an equivalence relation; that is, it is:

(i) Reflexive. M is similar to itself.
(ii) Symmetric. If M is similar to K, then K is similar to M.

(iii) Transitive. If M is similar to K, and K is similar to L, then M is similar
to L.

Proof. (i) is true because we can in the definition (14) choose S = I.
(ii) M similar to K means that

K = SMS-'. (14)'

Multiply both sides by S on the right and S on the left, and we see that K is similar
to M.

(iii) If K is similar to L, then

L=TKT-', (14)"
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where T is some invertible mapping. Multiply both sides of (14)' by T-1 on the right
and by on the left; we get

TKT-' = TSMS-T-'.

According to (14)", the left-hand side is L. The right-hand side can be written as

(TS) M(TS)_',

which is similar to M.

EXERCISE 10. Show that if M is invertible, and similar to K, then K also is
invertible, and K-I is similar to M.

Multiplication in £(X, X) is not commutative, that is, AB is in general not equal
to BA. Yet they are not totally unrelated.

Theorem 9. If either A or B in .'(X, X) is invertible, then AB and BA are
similar.

EXERCISE 11. Prove Theorem 9.

Given any element A of .2'(X, X) we can, by addition and multiplication, form all
polynomials in A:

aNAN +av_1 AN-i +... +aol;

we can write (17) as p(A), where

Vp(s) = aNS + ... + ao.

(17)

(17)'

The set of all polynomials in A forms a subalgebra of 2'(X, X); this subalgebra is
commutative. Such commutative subalgebras play a big role in spectral theory,
discussed in Chapters 6 and 8.

An important class of mappings of a linear space X into itself are projections.

Definition. A linear mapping P: X -> X is called a projection if it satisfies

PZ = P.

Example 11. X is the space of vectors x = (a1, aZ, ... , a"), P defined as

Px = (0, 0,

That is, the action of P is to set the first two components of x equal to zero.
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EXERCISE 12. Show that P defined above is a linear map, and that it is a
projection.

Example 12. Let X be the space of continuous functions f in the interval [-1, 1];
define Pf to be the even part off, that is,

(Pf)(x)
=.f(x) +f(-x)

2

EXERCISE 13. Prove that P defined above is linear, and that it is a projection.

Definition. The commutator of two mappings A and B of X into X is AB-BA.
Two mappings of X into X commute if their commutator is zero.

Remark. We can prove Corollary A' directly by induction on the number of
equations in, using one of the equations to express one of the unknowns xj in terms of
the others. By substituting this expression for xx into the remaining equations, we
have reduced the number of equations and the number of unknowns by one.

The practical execution of such a scheme has pitfalls when the number of
equations and unknowns is large. One has to pick intelligently the unknown to be
eliminated and the equation that is used to eliminate it. We shall take up these
matters in the next chapter.

Definition. The rank of a linear mapping is the dimension of its range.

EXERCISE 14. Suppose T is a linear map of rank I of a finite dimensional vector
space into itself.

(a) Show there exists a unique number c such that T2 = cT.
(b) Show that if c # 1 then I-T has an inverse. (As usual I denotes the identity

map Ix = x.)

EXERCISE 15. Suppose T and S are linear maps of a finite dimensional vector
space into itself. Show that the rank of ST is less than or equal the rank of S. Show
that the dimension of the nullspace of ST is less than or equal the sum of the
dimensions of the nullspaces of S and of T.



CHAPTER 4

Matrices

In Example 7 of Chapter 3 we defined a class of mappings T: R" -> U8m where the
ith component of u = Tx is expressed in terms of the components xl of x by the
formula

u( tjlxl, t = l , ... , to (1)

and the tjl are arbitrary scalars. These mappings are linear; conversely, we have the
following theorem.

Theorem 1. Every linear map Tx = u from R" to R' can be written in form (1).

Proof. The vector x can be expressed as a linear combination of the unit vectors
e1, ... , e where ej has jth component 1, all others 0:

x = E xlel. (2)

Since T is linear

u=Tx=>xjTel. (3)

Denote the ith component of Tel by tjl:

tij = (Tel);. (4)

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
Copyright R) 2007 John Wiley & Sons, Inc.
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It follows from (3) and (4) that the ith component u, of It is

Ui = xjtij,

exactly as in formula (1).

33

It is convenient and traditional to arrange the coefficients tij appearing in (1) in a
rectangular array,

t1I t12 ... tin

121

t,n! ... taw

(5)

Such an array is called an m by n (m x n) matrix, m being the number of rows,
n the number of columns. A matrix that has the same number of rows and
columns is called a square matrix. The numbers tij are called the entries of the
matrix T.

According to Theorem 1, there is a 1-to-I correspondence between m x n
matrices and linear mappings T: Ifs" -> R"'. We shall denote the (ij)th entry tij of the
matrix identified with T by

Tij = (T)ij. (5)'

A matrix T can be thought of as a row of column vectors, or a column of row
vectors:

ri

T = (ci,...,cn) _
r,,,

cj = ri = (tii,...,tin) (6)

According to (4), the ith component of Tej is tij; according to (6), the ith component
of cj is tij. Thus

Tej = cj. (7)

This formula shows that, as consequence of the decision to put tij in the ith row and
jth column, the image of ej under T appears as a column vector. To be consistent, we
shall write all vectors in U = 68as column vectors:

ui

um
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We shall also write elements of X = I8" as column vectors:

x=

The matrix representation (6) of a linear map l from 118" to I is a single row vector
of n components:

(8)

We define by (8) the product of a row vector r with a column vector x, in this order. It
can be used to give a compact description of formula (1) giving the action of a matrix
on a column vector:

rix
Tx=

r,,,X

(9)

where r 1 , . . . , r,,, are the rows of the matrix T.
In Chapter 3 we have described the algebra of linear mappings. Since matrices

represent linear mappings of 118"` into I8", there is a corresponding algebra of matrices.
Let S and T be m x n matrices, representing mappings of 118"' to I8'. Their sum

T + S represents the sum of these mappings. It follows from formula (4) that the
entries of T + S are the sums of the corresponding entries of T and S:

(T + S)ij = Tij + Sij.

Next we show how to use (8) and (9) to calculate the elements of the product of
two matrices. Let T, S be matrices

T: I8" -> 118', S: I8m -> Ri.

Since the target space of T is the domain space of S, the product ST is well-defined.
According to formula (7) applied to ST, the jth column of ST is

STej.

According to (7), Tej = cj; applying (9) to x = Tej, and S in place of T gives

sIcj

STej = Scj =

sjcj

where sk denotes the kth row of S. Thus we deduce this rule:
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Rule of matrix multiplication. Let T be an m x n matrix and S an 1 x in matrix.
Then the product of ST is an 1 x n matrix whose (kj)th entry is the product of the kth
row of S and the jth column of T:

(ST)kj = SkCj,

where sk is the kth row of S and cj is the jth column of T.
In terms of entries,

Example 1.

Example 2.

Example 3.

Example 4.

Example 5.

Example 6.

Example 7.

(ST ),j = SkiTij.

2 5 6 19 22
(3

1

4) (7 8) - (43 50)

()(3 4) = (6 8).

(3

(I

5(3

4)(2)=(11).

2)(5 6)=(13 16).

6)(2) _

(1 (1 2)

(1 2) (5
6)(21)

= (13 16) (2) = (45);

5C77 6

8) (3 4) -
(23

46)

(10)

(10)'

Examples 1 and 7 show that matrix multiplication of square matrices need not be
commutative. Example 6 is an illustration of the associative property of matrix
multiplication.

EXERCISE I. Let A be an arbitrary m x n matrix, and let D be an m x n
diagonal matrix,

_ d, ifi=j,
D' 0 if i#j.
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Show that the ith row of DA equals d, times the ith row of A, and show that the jth
column of AD equals dj times the jth column of A.

An n x n matrix A represents a mapping of [l8" into R". If this mapping is
invertible, the matrix A is called invertible.

Remark. Since the composition of linear mappings is associative, matrix
multiplication, which is the composition of mappings from 68" to liwith mappings
from 1 m to R', also is associative.

We shall identify the dual of the space R' of all column vectors with n
components as the space (R")' of all row vectors with n components.

The action of a vector I in the dual space (R")' on a vector x of fl8", denoted
by brackets in formula (6) of Chapter 2, shall be taken to be the matrix
product (8):

(11)

Let x, T and I be linear mappings as follows:

1: R' -+ 1, T: 08" -, R', x: R->R".

According to the associative law,

(lT)x = I(Tx). (12)

We identify I with an element of (Rand IT with an element of (11")'. Using the
notation (11) we can rewrite (12) as

(IT,x) = (1,Tx). (13)

We recall now the definition of the transpose T' of T, defined by formula (9) of
Chapter 3,

(T'l,x) = (1,Tx). (13)'

Comparing (13) and (13)' we see that the matrix T acting from the right on row
vectors is the transpose of the matrix T acting from the left on column vectors.

To represent the transpose Vas a matrix acting on column vectors, we change its
rows into columns, its columns into rows, and denote the resulting matrix as TT:

(TT)ij = Tj;. (13)"

Given a row vector r = (rj, . . . , we denote by rT the column vector with the
same components. Similarly, given a column vector c, cT denotes the row vector with
the same components.
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Next we turn to expressing the range of T in matrix language. Setting (7),
cj = Ti, finto (3), Tx = E xjTel, gives

u=Tx=x1ci+

This gives the following theorem.

Theorem 2. The range of T consists of all linear combinations of the columns
of the matrix T.

The dimension of this space is called in old-fashioned texts the column rank of T.
The row rank is defined similarly; (13)" shows that the row rank of T is the
dimension of the range of TT. Since according to Theorem 6 of Chapter 3.

dim RT = dim RTT,

we conclude that the column rank and row rank of a matrix are equal.

EXERCISE 2. Look up in any text the proof that the row rank of a matrix equals
its column rank, and compare it to the proof given in the present text.

We show now how to represent a linear mapping T: X -> U by a matrix. We have
seen in Chapter 1 that X is isomorphic to li", n = dim X, and U isomorphic to t',
m = dim U. The isomorphisms are accomplished by choosing a basis in X,
y, , ... , y,,, and then mapping yf f-, ej, j = l .... , n:

B: X-+R"; (14)

similarly,

C: U R"'. (14)'

Clearly, there are as many isomorphisms as there are bases. We can use any of these
isomorphisms to represent T as ifs" -> aB, obtaining a matrix representation M:

CTB-' = M. (15)

When T is a mapping of a space X into itself, we use the same isomorphism in
(14) and (14)', that is, we take B = C. So in this case the matrix representing T has
the form

BTB-' = M. (15)'
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Suppose we change the isomorphism B. How does the matrix representing T
change? If C is another isomorphism X H", the new matrix N representing T is
N = CTC-1. We can write, using the associative rule and (15)',

N = CTC-1 = CB-'BTB-IBC-1 = SMS-1, (16)

where S = CB-1. Since B and C both map X into H", CB-' = S maps H" onto H",
that is, S is an invertible n x it matrix.

Two square matrices N and M related to each other as in (16) are called
similar. Our analysis shows that similar matrices describe the same mapping of a
space into itself, in different bases. Therefore we expect similar matrices to have
the same intrinsic properties; we shall make the meaning of this more precise in
Chapter 6.

We can write any n x n matrix A in 2 x 2 block form:

A = All A12\'
A21 A22

where A11 is the submatrix of A contained in the first k rows and columns, A12 the
submatrix contained in the first k rows and the last n - k columns, and so on.

EXERCISE 3. Show that the product of two matrices in 2 x 2 block form can be
evaluated as

All A12 B11 B12 _ AIIBII+A12B21 A11B12+A12B22
A21 A22 B21 B22) AN B 11 + A22B21 AN B 12 + A22B22 )

The inversion of matrices will be discussed from a theoretical point of view in
Chapter 5, and from a numerical point of view in Chapter 17.

A matrix that is not invertible is called singular.

Definition. The square matrix 1 whose elements are lij = 0 when i is
lu = I is called the unit matrix.

54 j,

Definition. A square matrix (t,,) for which tip = 0 for i > j is called upper
triangular. Lower triangular is defined similarly.

Definition. A square matrix (tip) for which tq = 0 when I i - ji > I is called
tridiagonal.

EXERCISE 4. Construct two 2 x 2 matrices A and B such that AB = 0 but
BA#0.
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We turn now to the most important, certainly the oldest, way to solve sets of linear
equations, Gaussian elimination. We illustrate it on a simple example of four linear
equations for four unknowns x1, x2, x3, and x4:

xj + 2x2 + 3x3 - x4 = -2,
2xi + 5x2 + 4X3 - 3x4 = 1,

2x, + 3x2 + 4x3 + x4 = 1,

x1 +4x2+2x3-2x4 =3.

(17)

We solve this system of equations by eliminating the unknowns one by one; here is
how it is done. We use the first equation in (17) to eliminate xi from the rest of the
equations. To accomplish this, subtract two times the first equation from the second
and the third equations, obtaining

x2-2x3-x4=5, (18),

and

-x2-2x3+3x4=5. (18)2

Subtract the first equation from the fourth one, obtaining

2x2 - X3 - x4 = 5. (18)3

We use the same technique to eliminate x2 from the set of three equations (18).
We obtain

-4x3 + 2x4 = 10,

3X3 + X4 = -5.

(19),

(19)2

Finally we eliminate x3 from equations (19) by adding 3/4 times (19), to (19),; we
get

2x4 = 5/2,

which yields

x4 = 1. (20)4

We proceed in the reverse order, by backward substitution, to determine the other
unknowns. Setting the value of x4 from (20)4 into equation (19), gives

-4x3+2= 10..
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which yields

X3=-2. (20)3

We could have used equation (19)2 and would have gotten the same answer.
We determine x2 from any of the equations (18), say (l8) i, by using (20)3 and

(20)4 for X3 and x4. We get

x2+4- 1 =5,

so

x2 = 2. (20)2

Finally we determine xi from, say, the first equation (17), using the previously
determined values of X4, X3, and x2:

xi+4-6-1=-2,
xi = 1. (20),

EXERCISE 5. Show that xi, X2, X3, and x4 given by (20), satisfy all four equations
(20).

Notice that the order in which we eliminate the unknowns, along with the
equations which we use to eliminate them, is arbitrary. We shall return to these
points.

A system of n equations

n (21)

for n unknowns xi , .... x,, may have a unique solution, may have no solution, or may
have many solutions. We show now how to use Gaussian elimination to determine all
solutions, or conclude that no solution exists. Here is an example that illustrates the
last two possibilities.

xI + X2 + 2x3 + 3x4 = ui,

xj + 2x2 + 3x3 + X4 = U2,

2xi + X2 + 2X3 + 3x4 = u3i

3xi + 4x2 + 6X3 + 2x4 = u4.

(22)
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We eliminate x, from the last three equations by subtracting from them an
appropriate multiple of the first equation:

X2 +X3-2X4=U2-U,
-X2 - 2X3 - 3X4 = U3 - 2u,

X2-7x4=U4- 3u,

We use the first equation above to eliminate x2 from the last two:

-X3 - 5x4 = U3 + U2 - 3u,

-X3 - 5X4 = U4 - U2 - 2u,

We eliminate x3 by subtracting the last two equations from each other. We find that
thereby we have eliminated x4 as well, and we get

0 = U4 - U3 - 2U2 + U,. (23)

This is the necessary and sufficient condition for the system of equations (22) to have
a solution.

EXERCISE 6. Choose values of u,, u2, U3, u4 so that condition (23) is satisfied,
and determine all solutions of equations (22).

Equation (22) can be written in matrix notation as

Mx = U, (22)'

where x and u are column vectors with components x,, x2, X3, x4 and u,, u2, u3, U4,
and

1 2 3 1

2 1 2 3

3 4 6 2

EXERCISE 7. Verify that l = (1, -2, -1, 1) is a left nullvector of M:

/M=0.

Multiply equation (22)' on the left by l; using the result of Exercise 7, we get that

IMx=1u=0,

a rederivation of (23) as a necessary condition for (22)' to have a solution.



42 LINEAR ALGEBRA AND ITS APPLICATIONS

EXERCISE 8. Show by Gaussian elimination that the only left nuilvectors of M
are multiples of I in Exercise 7, and then use Theorem 5 of Chapter 3 to show that
condition (23) is sufficient for the solvability of the system (22).

Next we show how to use Gaussian elimination to prove Corollary A' in
Chapter 3:

A system of homogeneous linear equations

tjxj=0, i= 1...... m,
j=1

(24)

with fewer equations than unknowns, in < n, has a nontrivial solution-that is, one
where at least one of the xj is nonzero.

Proof. We use one of the equations (24) to express x, as a linear function of the
rest of the x's:

XI = 11(x2,...,X.). (25),

We replace x, by 11 in the remaining equations, and we use one of them to express x2
as a linear function of the remaining x's:

X2 = !2(X3,...xn).

We proceed in this fashion until we reach x:

xu, = lm(Xm+1 . . . . . x ) .

(25)2

(25)m

Since there were only in equations and in < n, there are no more equations left to be
satisfied. So we choose the values of x,,,+1 , . . . , x, arbitrarily, and we use equations
(25),,,, (25).-1.... , (25)1, in this order, to determine the values of x,,,, xm_,, ... ,X1.

This procedure may break down at the ith step if none of the remaining equations
contain xi. In this case we set x;.,1, ... ,x equal to zero, assign an arbitrary value to
xi, and determine x;_1,.... x, from equations (25)i_1,...,(25)1, in this
order. M

We conclude this chapter with some observations on how Gaussian elimination
works for determined systems of n inhomogeneous equations

tijxj = u;, i = 1,...,n
j=1

(26)

for n unknowns . . . . . x .,. In its basic form the first equation is used to eliminate x, ,
that is, express it as

x, = (27)1
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Then x, is replaced in the remaining equations by v, + 11. The first of these equations
is used to express x2 as

X2 = V2 + 12(X3,...,x,)- (27),

We proceed in this fashion until after (n - 1) steps we find the value of x,,. Then we
determine the values of 1 i ... , xl , in this order, from the relations

This procedure may break down right at the start if the coefficient t11 of x, in the
first equation is zero. Even if t,1 is not zero but very small, using the first equation to
express x, in terms of the rest of the x's involves division by t,1 and produces very
large coefficients in formula (27). This wouldn't matter if all arithmetic operations
were carried out exactly, but they never are; they are carried out in finite digit
floating point arithmetic, and when (27)1 is substituted in the remaining equations,
the coefficients ty, i > 1, are swamped.

A natural remedy is to choose another unknown, x1, for elimination and another
equation to accomplish it, so chosen that t;j is not small compared with the other
coefficients. This strategy is called complete pivoting and is computationally
expensive. A compromise is to keep the original order of the unknowns for
elimination, but use another equation for elimination, for which t;, is not small
compared to the other coefficients. This strategy, called partial pivoting, works very
well in practice (see, e.g., the text entitled Numerical Linear Algebra, by Trefethen
and Bau.)



CHAPTER 5

Determinant and Trace

In this chapter we shall use the intuitive properties of volume to define the
determinant of a square matrix. According to the precepts of elementary geometry,
the concept of volume depends on the notions of length and angle and, in particular,
perpendicularity, concepts that will be defined only in Chapter 8. Nevertheless, it
turns out that volume is independent of all these things, except for an arbitrary
multiplicative constant that can be fixed by specifying that the unit cube have
volume one.

We start with the geometric motivation and meaning of determinants. A simplex
in ll8" is a polyhedron with n + 1 vertices. We shall take one of the vertices to be the
origin and denote the rest as a 1 , . . . , a,,. The order in which the vertices are taken
matters, so we call 0, a i , .... a,, the vertices of an ordered simplex.

We shall be dealing with two geometrical attributes of ordered simplices, their
orientation and volume. An ordered simplex S is called degenerate if it lies on an
(n - 1)-dimensional subspace.

An ordered simplex (0, at, ... , S that is nondegenerate can have one of two
orientations: positive or negative. We call S positively oriented if it can be deformed
continuously and nondegenerately into the standard ordered simplex (0, et,... , en),
where ej is the jth unit vector in the standard basis of R". By such deformation we
mean n vector-valued continuous functions al(t) of t,0 < t < 1, such that (i)
S(t) = (0, at (t), ... , an(t)) is nondegenerate for all t and (ii) aa(0) = aa, aj(1) = ej.
Otherwise S is called negatively oriented.

For a nondegenerate oriented simplex S we define O(S) as + 1 or -1, depending
on the orientation of S, and zero when S is degenerate.

The volume of a simplex is given by the elementary formula

Vo1(S) =
1

Vol,,_ 1(Base)Altitude.
n

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
Copyright ((; 2007 John Wiley & Sons, Inc.

(1)

44



DETERMINANT AND TRACE 45

By base we mean any of the (n - 1)-dimensional faces of S, and by altitude we mean
the distance of the opposite vertex from the hyperplane that contains the base.

A more useful concept is signed volume, denoted as E(S), and defined by

E(S) = O(S)Vol(S). (2)

Since S is described by its vertices, 2(S) is a function of a1,. .. , a,,. Clearly, when
two vertices are equal, S is degenerate, and therefore we have the following:

(i) E(S) = 0 if aj =ak, j¢k.
A second property of E(S) is its dependence on aj when the other vertices are

kept fixed:
(ii) E(S) is a linear function of ai when the other ak, k # j , are kept fixed.

Let us see why we combine formulas (1) and (2) as

>(S) = 1
n

where

k = O(S)Altitude.

The altitude is the distance of the vertex a1; we call k the signed distance of the
vertex from the hyperplane containing the base, because O(S) has one sign when aj
lies on one side of the base and the opposite sign when aj lies on the opposite side.

We claim that when the base is fixed, k is a linear function of aa. To see why this is
so we introduce Cartesian coordinate axes so that first axis is perpendicular to the
base and the rest lie in the base plane. By definition of Cartesian coordinates, the first
coordinate k, (a) of a vector a is its signed distance from the hyperplane spanned by
the other axes. According to Theorem I (i) in Chapter 2, k, (a) is a linear function of
a. Assertion (ii) now follows from formula (1)'.

Determinants are related to the signed volume of ordered simplices by the
classical formula,

E (S) = I D(a,, ... , a ), (3)

where D is the abbreviation of the determinant whose columns are a, , . . . , a,,. Rather
than start with a formula for the determinant, we shall deduce it from the properties
forced on it by the geometric properties of signed volume. This approach to
determinants is due to E. Artin.

Property(i). D(a, , ... , 0 if a; = aj, i 0 j.
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Property (ii). D(a1, ... , a multilinear function of its arguments, in the
sense that if all a;, i # j are fixed, D is a linear function of the remaining
argument al.

Property (iii). Normalization:

D(e, , ... , en) = 1. (4)

We show now that all remaining properties of D can be deduced from those so far
postulated.

Property (iv). D is an alternating function of its arguments, in the sense that if
ai and aj are interchanged, i # j, the value of D changes by the factor (- 1).

Proof. Since only the ith andjth argument change, we shall indicate only these.
Setting a; = a, aj = h we can write, using Properties (i) and (ii):

D(a, b) = D(a, b) + D(a, a) = D(a, a + b)

= D(a,a+b) - D(a+b, a+b)
= -D(b, a + b) = -D(b, a) - D(b, b) = -D(b, a).

Property (v). If a, , ... , an are linearly dependent, then D(a,.... , 0.

Proof. If as,. .. , a are linearly dependent, then one of them, say a,, can be
expressed as a linear combination of the others:

a, = k2a2 + .. +

Then, using Property (ii),

D(a,.... ,an) = D(k2a2+... +knana a2,....
k2D(a2, a2, -,an) + ... + knD(an, a2, .... an).

By property (i), all terms in the last line are zero.

Next we introduce the concept of permutation. A permutation is a mapping p of n
objects, say the numbers 1, 2. ... , n, onto themselves. Like all functions,
permutations can be composed. Being onto, they are one-to-one and so can be
inverted. Thus they form a group; these groups, except for n = 2, are
noncommutative.

We denote p(k) as pk; it is convenient to display the action of p by a table:

1 2 n
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Example 1. p = 2433. Then

2 _ 1234 i = 1234
P

4321'
P

3142'

3 _ 1234 a _ 1234

p 3142
p

1234.

Next we introduce the concept of signature of a permutation, denoted as a(p). Let
xi, ... , x,, be n variables; their discriminant is defined to be

P(xi,...,x,) = fJ(xi - xj).

i<j

Let p be any permutation. Clearly,

rl(xpi - xnj)
1<j

is either P(xi,...x,,) or

Definition. The signature 6(p) of a permutation p is defined by

P(p(xi,...,xn)) = Or(p)P(xi,...,xn).

Properties of signature:

(a) a(p) = +I or - 1.
(b) o'(Pi oP2) = a(p1)o'(p2)

EXERCISE I. Prove properties (7).

(5)

(6)

(7)

We look now at a special kind of permutation, an interchange. These are defined
for any pair of indices, j, k, j # k as follows:

p(i) = i fori # fork,

p(j) = k, p(k) =j.

Such a permutation is called a transposition. We claim that transposition has the
following properties:

(c) The signature of a transposition t is minus one:

a(t) = -1. (8)

(d) Every permutation p can be written as a composition of transpositions:

,) = tk 0 ... 0 ti. (9)
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EXERCISE 2. Prove (c) and (d) above.

Combining (7) with (8) and (9) we get that

a(P) = (-1)k, (10)

where k is the number of factors in the decomposition (9) of p.

EXERCISE 3. Show that the decomposition (9) is not unique, but that the parity
of the member k of factors is unique.

Example 2. The permutation p = ?4545 is the product of three transpositions
11 = 12345 t2 = 12345 t3 = 12345:

12543 21345 42315

p=t3012 0 I

We return now to the function D. Its arguments aj are column vectors

a IJ

aJ= 1,...,n.

This is the same as

aj = aljel + ... +

Using Property (ii), multilinearity, we can write

D(al,...,an) = D(allel + ... + anIe,,,a2,...,an)

= all D(e1, a2, ... , an) + ... + a,I D(en, a2, ... , an). (12)

Next we express a2 as a linear combination of el.... , e and obtain a formula like
(12) but containing n22 terms. Repeating this process n times we get

D(al.... ,an) _ at,l aj2...afn D(ef..... ef), (13)
f

where the summation is over all functions f mapping 11, . . . , n} into { I.... , n}.
If the mapping f is not a permutation, then f; = f for some pair i # j and by
Property (i).

D(ef,..... ef) = 0. (14)

This shows that in (13) we need sum only over those f that are permutations.
We saw earlier that each permutation can be decomposed into k transpositions

(9). According to Property (iv), a single transposition of its arguments changes the
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value of D by a factor of (-1). Therefore k transpositions change it by the factor
(-1)k. Thus, using (10),

D(ee,,...,en,)=a(P)D(e,,...,e,,) (15)

for any permutation. Setting (14) and (15) into (13) we get, after using the
normalization (4), that

D(ai,...,a,.) = Ea(P)an i ...ap.,,. (16)

This is the formula for D in terms of the components of its arguments.
Formula (16) was derived using solely properties (i), (ii), and (iii) of

determinants. Therefore we conclude with the following theorem.

Theorem 1. Properties (i), (ii), and (iii) uniquely determine the determinant as
a function of a, , . . . ,

EXERCISE 4. Show that D defined by (16) has Properties (ii), (iii) and (iv).

EXERCISE 5. Show that Property (iv) implies Property (i), unless the field K has
characteristic two, that is, 1 + I = 0.

Definition. Let A be an n x n matrix; denote its column vectors by
a,,. -., a,,: A = (at,... , a,,). Its determinant, denoted as det A, is

det A = D(a,,...,a,,), (17)

where D is defined by formula (16).

The determinant has properties (i)-(v) that have been derived and verified for the
function D. We state now an additional important property.

Theorem 2. For all pairs of n x n matrices A and B,

det(BA) = det A det B. (18)

Proof. According to equation (7) of Chapter 4, the jth column of BA is (BA)ee.
The jth column aj of A is Aej; therefore the jth column of BA is

(BA)ej = BAe1 = Bad.

By definition (17),

det(BA) = D(Ba,,... , (19)
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We assume now that det B # 0 and define the function C as follows:

det(BA)

Using (19) we can express C as follows:

detB

(20)

(20)'

We claim that the function C has Properties (i)-(iii) postulated for D.
(i) If a; = aj, i # j, then Ba; = Baj; since D has Property (i), it follows that the

right-hand side of (20)' is zero. This shows that C also has Property (i).
(ii) Since Ba; is a linear function of a;, and since D is a multilinear function,

it follows that the right-hand side of (20)' is also a multilinear function. This shows
that C is a multilinear function of a I, . . . , a,,, that is, has Property (ii).

(iii) Setting a; = e;, i = 1, 2 , ... , n into formula (20)', we get

D(Be1..... Be,,)
detB

Now Be; is the ith column b, of B, so that the right-hand side of (21) is

D(bi,...,b")

det B

(21)

(22)

By definition (17) applied to B, (22) equals I; setting this into (21) we see that
C(ei .... , e") = 1. This proves that C satisfies Property (iii).

We have shown in Theorem I that a function C that satisfies Properties (i)-(iii) is
equal to the function D. So

D(ai,....a,,) = detA.

Setting this into (20) proves (18), when det B 54 0.
When det B = 0 we argue as follows: define the matrix B(t) as

B(t)=B+tI.

Clearly, B(0) = B. Formula (16) shows that D(B(t)) is a polynomial of degree n, and
that the coefficient of t" equals one. Therefore, D(B(t)) is zero for no more than n
values of t; in particular D(B(t)) 0 for all t near zero but not equal to zero.
According to what we have already shown, det(B(t)A) = det A det B(t) for all such
values of t; letting i tend to zero yields (18). El
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Corollary 3. Ann x n matrix A is invertible if det A # 0.

51

Proof. Suppose A is not invertible; then its range is a proper subspace of R". The
range of A consists of all linear combinations of the columns of A; therefore the
columns are linearly dependent. According to property (v), this implies that
det A = 0.

Suppose, on the other hand, that A is invertible; denote its inverse by B:

BA=1.

According to Theorem 2

det B det A = det 1.

By property (iii), det I = 1; so, since D(1) = 1,

det B det A= 1,

which shows that det A # 0.

The geometric meaning of the multiplicative property of determinants is this: the
linear mapping B maps every simplex onto another simplex whose volume is Idet BI
times the volume of the original simplex. Since every open set is the union of
simplices, it follows that the volume of the image under B of any open set is Idet BI
times the original volume.

We turn now to yet another property of determinants. We need the following
lemma.

Lemma 4. Let A be an n x n matrix whose first column is el:

I X X X
0

A= A
0

(23)

here All denotes the (n - 1) x (n - 1) submatrix formed by entries ay, i > I, j > 1.
We claim that

det A = det A,,. (24)

Proof As first step we show that

1 0...0
det A = det 0 All (25)

0
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For it follows from Properties (i) and (ii) that if we alter a matrix by adding a
multiple of one of its columns to another, the altered matrix has the same
determinant as the original. Clearly, by adding suitable multiplies of the first column
of A to the others we can turn it into the matrix on the right in (25).

We regard now

C(AII) = det
C1 0 1

0 All

as a function of the matrix All. Clearly it has Properties (i)-(iii). Therefore it must
be equal to det A,,. Combining this with (25) gives (24).

EXERCISE 6. Verify that C(AII) has properties (i)-(iii).

Corollary 5. Let A be a matrix whose jth column is e;. Then

detA = (25)'

where A,, is the (n - 1) x (n - 1) matrix obtained by striking out the ith row and jth
column of A; A; is called the (ij)th minor of A.

EXERCISE 7. Deduce Corollary 5 from Lemma 4.

We deduce now the so-called Laplace expansion of a determinant according to its
columns.

Theorem 6. Let A be any n x n matrix and j any index between I and n.
Then

det A = (-1)'+'a1 det (26)

Proof. To simplify notation, we take j = I. We write aI as a linear combination
of standard unit vectors:

al =allel

Using multilinearity, we get

detA = D(al,...,an) =D(allel
alID(el,a2,...,an) + ..

Using Corollary 5, we obtain (26).
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We show now how determinants can be used to express solutions of systems of
equations of the form

Ax = u, (27)

A an invertible n x n matrix. Write

x=Exjej;

according to (7) of Chapter 4, Ae; = aj, the jth column of A. So (27) is equivalent to

E xjaj = u. (27)'
j

We consider now the matrix Ak obtained by replacing the kth column of A by u:

Ak = (al.... ,ak-I, u,ak+I,...,a,,)

= (a1,...,ak-I, Exjaj,ak+I,.... a,).

We form the determinant and use its multilinearity,

detAk = xjdet(al,...,ak-I, aj, ak+I.... ,an).

Because of Property (i) of determinants, the only nonzero term on the right is the kth,
so we get

det Ak = xk det A.

Since A is invertible, det A 0; so

det Ak
Xk =

det A
(28)

We use now the Laplace expansion of det Ak according to its kth column; we get

det Ak = (-1),+k det A;ku;

and so, using (28),

Xk = 1)i+kdetA,ku, (29)
det A
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This is called Cramer's rule for finding the solution of the system of equations (27).
We now translate (29) into matrix language.

Theorem 7. The inverse matrix A-' of an invertible matrix A has the form

+,F det A;k
('4 )k; _ (-1) det A

(30)

Proof. Since A is invertible, det A 0. A-1 acts on the vector u; see formula (1)
of Chapter 4,

(A-'u)k = (A-')k;u, (31)

Using (30) in (31) and comparing it to (29) we get that

that is,

(A- Iu)k = Xk, k = 1,...,n, (32)

A-lu = x.

This shows that A-' as defined by (30) is indeed the inverse of A whose action is
given in (27). p

We caution that reader that for n > 3, formula (30) is not a practical numerical
method for inverting matrices.

EXERCISE 8. Show that for any square matrix

det AT = det A, AT = transpose of A. (33)

[Hint: Use formula (16) and show that for any permutation Q(p) = v(p-I ).]

EXERCISE 9. Given a permutation p of n objects, we define an associated so-
called permutation matrix P as follows:

1, if j = p(i),P; _
0, otherwise.

(34)

Show that the action of P on any vector x performs the permutation p on the
components of x. Show that if p, q are two permutations and P, Q are the associated
permutation matrices, then the permutation matrix associated with poq is the product
PQ.
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The determinant is an important scalar-valued function of n x n matrices.
Another equally important scalar-valued function is the trace.

Definition. The trace of a square matrix A, denoted as tr A, is the sum of the
entries on its diagonal:

tr A = aii. (35)

Theorem 8. (a) Trace is a linear function:

trkA =ktrA, tr(A+B) =trA+trB.

(b) Trace is "commutative"; that is,

tr(AB) = tr(BA) (36)

for any pair of matrices.

Proof Linearity is obvious from definition (35). To prove part (b), we use the
rule, [see (10)' of Chapter 4] for matrix multiplication:

(AB)ii = aikbki
k

and

(BA)ii = E bikaki
k

So

tr(AB) = > aikbki = E bikaki = tr(BA)
it i,k

follows if one interchanges the names of the indices i, k.

We recall from the end of Chapter 3 the notion of similarity. The matrix A is
called similar to the matrix B if there is an invertible matrix S such that

A = SBS-'. (37)

We recall from Theorem 8 of Chapter 3 that similarity is an equivalence relation;
that is, it is the following:

(i) Reflexive: A is similar to itself.
(ii) Symmetric: if A is similar to B, B is similar to A,

(iii) Transitive: if A is similar to B, and B is similar to C, then A is similar to C.
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Theorem 9. Similar matrices have the same determinat and the same trace.

Proof. Using Theorem 2, we get from (37)

detA = (det S)(det B)(det S-1) = (det B)(det S) det(S-1)

= detB det(SS-1) = (detB)(detI) = detB.

To show the second part we use Theorem 7(b):

trA = tr(SBS-) = tr((SB)S-') = tr(S-'(SB)) = trB. O

At the end of Chapter 4 we remarked that any linear map T of an n-dimensional
linear space X into itself can, by choosing a basis in X, be represented as an n x n
matrix. Two different representations, coming from two different choices
of bases, are similar. In view of Theorem 9, we can define the determinant
and trace of such a linear map T as the determinant and trace of a matrix
representing T.

EXERCISE to. Let A be an m x n matrix, B an n x m matrix. Show that

trAB = trBA.

EXERCISE I I. Let A be an n x n matrix, AT its transpose. Show that

trAAT = E a .

The square root of the double sum on the right is called the Euclidean, or Hilbert-
Schmidt, norm of the matrix A.

In Chapter 9, Theorem 4, we shall derive an interesting connection between
determinant and trace.

EXERCISE 12. Show that the determinant of the 2 x 2 matrix

is D = ad - bc.

EXERCISE 13. Show that the determinant of an upper triangular matrix, one
whose elements are zero below the main diagonal, equals the product of its elements
along the diagonal.
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EXERCISE 14. How many multiplications does it take to evaluate det A by using
Gaussian elimination to bring it into upper triangular from?

EXERCISE 15. How many multiplications does it take to evaluate det A by
formula (16)?

EXERCISE 16. Show that the determinant of a (3 x 3) matrix

fa b c
A= d e f

g h i

can be calculated as follows. Copy the first two columns of A as a fourth and fifth
column:

a b c a b

d e f d e
g h i g h

det A=aei+bfg+cdh-gec-hfa-idb.

Show that the sum of the products of the three entries along the dexter diagonals,
minus the sum of the products of the three entries along the sinister diagonals is
equal to the determinant of A.



CHAPTER 6

Spectral Theory

Spectral theory analyzes linear mappings of a space into itself by decomposing them
into their basic constituents. We start by posing a problem originating in the stability
of periodic motions and show how to solve it using spectral theory.

We assume that the state of the system under study can be described by a finite
number n of parameters; these we lump into a single vector x in 1°. Second, we
assume that the laws governing the evolution in time of the system under study
determine uniquely the state of the system at any future time if the initial state of the
system is given.

Denote by x the state of the system at time t = 0; its state at t = 1 is then
completely determined by x; we denote it as F(x). We assume F to be a differentiable
function. We assume that the laws governing the evolution of the system are the
same at all times; it follows then that if the state of the system at time t = 1 is z, its
state at time t = 2 is F(z). More generally, F relates the state of the system at time t to
its state at t + 1.

Assume that the motion starting at x = 0 is periodic with period one, that is that it
returns to 0 at time t = 1. That means that

F(0) = 0, (1)

This periodic motion is called stable if, starting at any point It sufficiently close to
zero, the motion tends to zero as t tends to infinity.

The function F describing the motion is differentiable; therefore for small h, F(h)
is accurately described by a linear approximation:

F(h) Ah.

For purposes of this discussion we assume that F is a linear function

F(h) = Ah,

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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(3)
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A an it x n matrix. The system starting at h will, after the elapse of N units of time,
be in the position

ANh.

In the next few pages we investigate such sequences, that is, of the form

h, Ah, ... , ANh.....

(4)

(5)

First a few examples of how powers AN of matrices behave; we choose N = 1024,
because then AN can be evaluated performing ten squaring operations:

Case (a)

3

(b)

5 6A (1 4) ( 4)3
A'°24 >10700 <l0-1s

These numerical experiments strongly suggest that

(a) AN - oc as N -p oo,
(b) AN -> 0 as N oo, that is, each entry of AN tends to zero.

We turn now to a theoretical analysis of the behavior of sequences of the form (5).
Suppose that a vector It 0 0 has the special property with respect to the matrix A that
Ah is merely a multiple of h:

Ah = ah, where a is a scalar and It 0 0. (6)

Then clearly

AN h = aNh. (6)N

In this case the behavior of the sequence (5) is as follows:

(i) If dal > I. A N h oc.

(ii) If Jal < 1, ANh -0.
(iii) If a = 1, ANh = h for all N.

This simple analysis is applicable only if (6) is satisfied. A vector h satisfying (6)
is called an eigenvector of A; a is called an eigenvalue of A.

How farfetched is it to assume that A has an eigenvector? We shall show that
every n x n matrix over the field of complex numbers has an eigenvector. Choose
any nonzero vector w and build the following set of n + I vectors:

w,Aw,A2w,...,A°w.
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Since n + I vectors in the n-dimentional space C" are linearly dependent, there is a
nontrivial linear relation between them:

c1Aiw = 0,
0

not all ci zero. We rewrite this relation as

where p(t) is the polynomial

p(A)w = 0,

p(t) citi.
0

(7)

Every polynomial over the complex numbers can be written as a product of linear
factors:

p(t) = c [J(x - ai), c # 0.

p(A) can be similarly factored and (7) rewritten as

cfl(A - a3I)w = 0.

This shows that the product II(A - aiI) maps the nonzero vector w into 0 and is
therefore not invertible. According to Theorem 4 of Chapter 3, a product of
invertible mappings is invertible. It follows that at least one of the matrices A - aiI is
not invertible; such a matrix has a nontrivial nullspace. Denote by h any nonzero
vector in the nullspace:

(A - aI)h = 0, a = ai. (6)'

This is our eigenvalue equation (6).
The argument above shows that every matrix A has at least one eigenvalue, but it

does not show how many or how to calculate them. Here is another approach.
Equation (6)' says that h belongs to the nullspace of (A - al); therefore the

matrix A - al is not invertible. We saw in Corollary 3 of Chapter 5 that this can
happen if and only if the determinant of the matrix A - aI is zero:

det(aI - A) = 0. (8)

So equation (8) is necessary for a to be an eigenvalue of A. It is also sufficient; for if
(8) is satisfied, the matrix A - aI is not invertible. By Theorem 1 of Chapter 3 this
noninvertible matrix has a nonzero nullvector h; (6)' shows that h is an eigenvector
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of A. When the determinant is expressed by formula (16) of Chapter 5, (8) appears as
an algebraic equation of degree n for a, where A is an n x n matrix. The left-hand
side of (8) is called the characteristic polynomial of the matrix A and is denoted as

PA

Example I

3 2
A=

1 4
det(A-aI)=det

3 a 2 (3-a)(4-a)-2
1 4-a

=a2-7a+10=0.

This equation has two roots,

ai = 2, a2 = 5.

These are eigenvalues; there is an eigenvector corresponding to each:

(A-a,I)h, = (1 2)hl =0

is satisfied by

and of course by any scalar multiple of hi. Similarly,

(A - a2I)h2 =
(12

2 h2 = 0

is satisfied by

and of course by any multiple of h2.
The vectors h, and h2 are not multiples of each other, so they are linearly

independent. Thus any vector h in U82 can be expressed as a linear combination of h,
and h2:

h = b,h, + b2h2. (9)
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We apply AN to (9) and use relation (6)N,

ANh = b, a' h, + b2a2 h2. (9)N

Since a, = 2, a2 = 5, both a'' = 2N and 5N tend to infinity; since h, and h2 are
linearly independent, it follows that also ANh tends to infinity, unless both b, and b2
are zero, in which case, by (9), h = 0. Thus we have shown that for A = (i 2) and
any h ¢ 0, ANh. oc as N - oo; that is, each component tends to infinity. This
bears out our numerical result in case (a). In fact, AN - 5N, also borne out by the
calculations.

Example 2. Here is a more interesting case. The Fibonacci sequence fo, f,....
is defined by the recurrence relation

=fn

with the starting data fo = 0, f, = 1. The first ten terms of the sequence are

0,1,1,2,3,5,8,13,21,34;

(10)

they seem to be growing rapidly. We shall construct a formula for f that displays its
rate of growth. We start by rewriting the recurrence relation (10) in matrix-vector
form:

( I I) (ff, I )

We deduce recursively that

G
f,

fn+i
(10)'

(ff+I) = An(f ), A= (0 1), (11)

We shall represent the nth power of A in terms of its eigenvalues and eigenvectors.

det(A - al) = det(
la

I I a) = a22 - a - 1.

The zeros of the characteristic polynomial of A are

1+vf5- 1-f
a, = 2 a2 = 2

Note that a, is positive and greater than 1, whereas a2 is negative and in absolute
value much smaller than 1.
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The eigenvectors satisfy the equations

a, 1 a2 1

h, = 0, h2 = 0.
1 1-a, 1 1-a2

These equations are easily solved by looking at the first component:

h,
a,= ( I ) h2 = I a2 I;
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of course any scalar multiples of them are eienvectors as well.
Next we express the initial vector 004 1) _ (0, 1)T as a linear combination of

the eigenvectors:

(?) = c,h1 + CA).

Comparing the first component shows that c2 = -Cl. The second component yields
c, = 1/f. So

(f' 1 =I h,-7h2.
Vr5

Set this into (11); we get

G,+I ) = 75 Vr5- 75-
The first component of this vector equation is

f"=ai/v'-az/f.
Since a2/F5 is less than 1/2, and since f is an integer, we can put this relation in
the following form:

a"
f = nearest integer to

EXERCISE I. Calculate f32.

We return now to the general case (6), (8). The characteristic polynomial of the
matrix A,

det(aI - A) = pA(a),

is a polynomial of degree n; the coefficient of the highest power a" is 1.
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According to the fundamental theorem of algebra, a polynomial of degree n with
complex coefficients has n complex roots; some of the roots may be multiple. The
roots of the characteristic polynomial are the eigenvalues of A. To make sure that
these polynomials have a full set of roots, the spectral theory of linear maps is
formulated in linear spaces over the field of complex numbers.

Theorem 1. Eigenvectors of a matrix A corresponding to distinct eigenvalues
are linearly independent.

Proof. Suppose ai # ak for i # k and

Ahi = aihi, hi 0. (12)

Suppose now that there were a nontrivial linear relation among the hi. There may be
several; since all hi # 0, all involve at least two eigenvectors. Among them there is
one which involves the least number m of eigenvectors:

m

bjhh=0, b1#0, j=I...... ; (13)

here we have renumbered the hi. Apply A to (13) and use (12); we get

Eb1Ah,=>bjajhj=0. (13)'

Multiply (13) by aand subtract from (13)':

ni

E(bjaj-bja,n)hh=0. (13)"

Clearly the coefficient of h,,, is zero and none of the others is zero, so we have a linear
relation among the h1 involving only m - I of the vectors, contrary to in being the
smallest number of vectors satisfying such a relation.

Using Theorem I we deduce Theorem 2.

Theorem 2. If the characteristic polynomial of the n x n matrix A has n distinct
roots, then A has n linearly independent eigenvectors.

In this case the n eigenvectors form a basis; therefore every vector h in C" can be
expressed as a linear combination of the eigenvectors:

h = > bjhj. (14)
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Applying AN to (13) and using (6)N we get

ANh = > bja7h,.
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(14)'

This formula can be used to answer the stability question raised at the beginning of
this chapter:

EXERCISE 2. (a) Prove that if A has n distinct eigenvalues a1 and all of them are
less than one in absolute value, then all h in C",

ANh_O asN oo,

that is, all components of ANh tend to zero.
(b) Prove that if all al are greater than one in absolute value, then for all h # 0,

ANh - oc asN ->oc,

that is, some components of ANh tend to infinity.

There are two simple and useful relations between the eigenvalues of A and the
matrix A itself.

Theorem 3. Denote by ai, ... , a,, the eigenvalues of A, with the same
multiplicity they have as roots of the characteristic equation of A. Then

E a; = tr A, H a; = det A. (15)

Proof. We claim that the characteristic polynomial of A has the form

PA (S) = s" - (trA)s"-1 + + (-1)"detA. (15)'

According to elementary algebra, the polynomial PA can be factored as

"
PA(s) = fl(s - a;); (16)

1

this shows that the coefficient of s"- 1 in PA is - a;, and the constant term is
(-1)"fj al. Comparing this with (15)' gives (15).

To prove (15)', we use first formula (16) in Chapter 5 for the determinant as a sum
of products:

s-ail -a12

-alt s - a22
PACs) = det(sI - A) = det

-a,,,

= E a(p) H (sSr;, - ai)-

-al"
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Clearly the terms of degree n and n - 1 in s come from the single product of the
diagonal elements.

fJ(s - ai,) = s" - (trA) s"-' + -

This identifies the terms of order n and (n - 1) in (15). The term of order zero,
PA(0), is det (-A) _ (-1)" det A. This proves (15)' and completes the proof of
Theorem 3.

EXERCISE 3. (a) Verify for the matrices discussed in Examples 1 and 2,

3 2
4) and (0

1

1(1

that the sum of the eigenvalues equals the trace, and their product is the determinant
of the matrix.

Relation (6)N, A"h = a"h, shows that if a is an eigenvalue of A, aN is an
eigenvalue of AN. Now let q be any polynomial:

q(s) _

Multiplying (6)N by qN and summing we get

q(A)h = q(a)h.

The following result is called the spectral mapping theorem.

(17)

Theorem 4. (a) Let q be any polynomial, A a square matrix, a an eigenvalue of
A. Then q(a) is an eigenvalue of q(A).

(b) Every eigenvalue of q(A) is of the form q(a), where a is an eigenvalue of A.

Proof. Part (a) is merely a verbalization of relation (17), which shows also that A
and q(A) have h as common eigenvector.

To prove (b), let b denote an eigenvalue of q(A); that means that q(A) - bl is not
invertible. Now factor the polynomial q(s) - b:

q(s) - b = c[I(s - r;).

We may set A in place of s:

q(A) - bl = c [J(A - r;l).
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By taking b to be an eigenvalue of q(A), the left-hand side is not invertible.
Therefore neither is the right-hand side. Since the right-hand side is a product, it
follows that at least one of the factors A - riI is not invertible. That means that some
r; is an eigenvalue of A. Since r, is a root of q(s) - b,

q(rj) = b.

This completes the proof of part (b).

If in particular we take q to be the characteristic polynomial PA of A, we conclude
that all eigenvalues of PA (A) are zero. In fact a little more is true.

Theorem 5 (Cayley-Hamilton). Every matrix A satisfies its own characteristic
equation:

PA (A) = 0. (18)

Proof. If A has distinct eigenvalues, then according to Theorem 2 it has n linearly
independent eigenvectors hj, j = 1, .... n. Using (4) we apply PA(A):

PA(A)h = E PA(aj)bjhj = E 0 = 0

for all h, proving (18) in this case. For a proof that holds for all matrices we use the
following lemma.

Lemma 6. Let P and Q be two polynomials with matrix coefficients

P(s) = E PiSi, Q(s) _ Qks' .

The product PQ = R is then

R(s) _ R,st, R, = > PjQk
j+k=r

Suppose that the matrix A commutes with the coefficients of Q; then

P(A)Q(A) = R(A). (19)

The proof is self-evident.
We apply Lemma 6 to Q(s) = sI - A and P(s) defined as the matrix of cofactors

of Q(s); that is,

(-1)`+jDjrt(s), (20)
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Dif the determinant of the ijth minor of Q(s). According to the formula (30) of
Chapter 5,

P(s)Q(s) = det Q(s) I = pA(s) I, (21)

where pA(s) is the characteristic polynomial of A. A commutes with the coefficients
of Q; therefore by Lemma 6 we may set s = A in (21). Since Q(A) = 0, it follows
that

PA(A) = 0.

This proves Theorem 5.
We are now ready to investigate matrices whose characteristic equation has

multiple roots. First a few examples.

Example 3. A = I,

PA(s) = det(sI - I) = (s - 1)";

1 is an n-fold zero. In this case every nonzero vector h is an eigenvector of A.

Example 4. A = (2 z' ), tr A = 2, det A = 1; therefore by Theorem 3,

PA(s) = s2 - 2s + 1,

whose roots are one, with multiplicity two. The equation

Ah = 3hi + 2h-) _ hi

-2h1 - hZ h2

has as solution all vectors h whose components satisfy

hI+h2=0.

All these are multiples of A So in this case A does not have two independent
eigenvectors.

We claim that if A has only one eigenvalue a and n linearly independent
eigenvectors, then A = aI. For in this case every vector in IB" can be written as in
(14), a linear combination of eigenvectors. Applying A to (14) and using a; = a for
i = 1,...,n gives that

Ah = ah

for all h; then A = al. We further note that every 2 x 2 matrix A with
IT A = 2, det A = I has I as a double root of its characteristic equation. These
matrices form a two-parameter family; only one member of this family, A = I, has
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two linearly independent eigenvectors. This shows that, in general, when the
characteristic equation of A has multiple roots, we cannot expect A to have n linearly
independent eigenvectors.

To make up for this defect one turns to generalized eigenvectors. In the first
instance a generalized eigenvectorf is defined as satisfying

(A - aI)2f = 0. (22)

We show first that these behave almost as simply under applications of AN as the
genuine eigenvectors. We set

(A - al) f = h. (23)

Applying (A - aI) to this and using (22), we get

(A - aI)h = 0, (23)'

that is, h is a genuine eigenvector. We rewrite (23) and (23)' as

Af=af+h, Ah=ah. (24)

Applying A to the first equation of (24) and using the second equation gives

A2f = aAf + Ah = a2f + 2ah.

Repeating this N times gives

ANf = aNf + NaN-III. 25)

EXERCISE 4.

EXERCISE 5.

Verify (25) by induction on N.

Prove that for any polynomial q,

q(A)f = q(a)f + q'(a)h, (26)

where q' is the derivative of q and f satisfies (22).

Formula (25) shows that if Ial < 1, and f is a generalized eigenvector of A,
ANf -,. 0.

We now generalize the notion of a generalized eigenvector.

Definition. f is a generalized eigenvector of A, with eigenvalue a, if f # 0 and

(A - aI)f =0 (27)

for some positive integer in.
We state now one of the principal results of linear algebra.
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Theorem 7 (Spectral Theorem). Let A be an it x it matrix with complex
entries. Every vector in C" can be written as a sum of eigenvectors of A, genuine or
generalized.

For the proof, we need the following results of algebra.

Lemma 8. Let p and q be a pair of polynomials with complex coefficients and
assume that p and q have no common zero. Then there are two other polynomials a
and b such that

ap + bq - 1. (28)

Proof. Denote by 9 all polynomials of the form ap + bq. Among them there is
one, nonzero, of lowest degree; call it d. We claim that d divides both p and q; for
suppose not; then the division algorithm yields a remainder r, say

r = p - md.

Since p and d belong to .f, so does p - and = r; since r has lower degree than d, this
is a contradiction.

We claim that d has degree zero; for if it had degree greater than zero, it would, by
the fundamental theorem of algebra, have a root. Since d divides p and q, this would
be a common root of p and q. Since we have assumed the contrary, deg d = 0
follows; since d 0 0, d - const., say - 1. This proves (28).

Lemma 9. Let p and q be as in Lemma 8, and let A be a square matrix with
complex entries. Denote by NN.. Nq, and Npq the null spaces of p(A), q(A), and
p(A)q(A), respectively. Then Nnq is the direct sum of NN, and Nq:

Npq=Np®Nq, (29)

by which we mean that every x in Npq can be decomposed uniquely as

x = Xp + xq, xp in Nn, xq in Nq. (29)'

Proof. We replace the argument of the polynomials in (28) by A; we get

a(A)p(A) + b(A)q(A) = I. (30)

Letting both sides act on x we obtain

a(A)p(A)x + b(A)q(A)x = x. (31)
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We claim that if x belongs to Npq, then the first term on the left in (31) is in Nq, and
the second in Np. To see this we use the commutativity of polynomials of the same
matrix:

q(A)a(A)p(A)x = a(A)p(A)q(A)x = 0,

since x belongs to the nullspace of p(A)q(A). This proves that the first term on the
left in (31) belongs to the nullspace of q(A); analogously the second term belongs to
the nullspace of p(A). This shows that (31) gives the desired decomposition (29)'.

To show that the decomposition is unique, we argue as follows: If

x=xp+xq=x'p+xq,

then

y=xp-Xp=a'q-xq

is an element that belongs to both Np and Nq. Let (30) act on y:

a(A)p(A)y + b(A)q(A)y = y.

Both terms on the left-hand side are zero; therefore so is the right-hand side, y. This
proves that xp = xp, xq = xq.

Corollary 10. Let p,.... ,pk be a collection of polynomials that are pairwise
without a common zero. Denote the nullspace of the product p, (A) ... pk(A) by
Np, ... p,. Then

Np,...p, = Np1 ®... ®NpA. (32)

EXERCISE 6. Prove (32) by induction on k.

Proof of Theorem 7. Let x be any vector; the n + 1 vectors x, Ax, A2x, ... A"x
must be linearly dependent; therefore there is a polynomial p of degree less than or
equal to n such that

p(A)x = 0 (33)

We factor p and rewrite this as

fl (A - rjI)m'x = 0. (33)'
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r1 the roots of p, m1 their multiplicity. When r1 is not an eigenvalue of A, A - r1I is
invertible; since the factors in (33)' commute, all invertible factors can be removed.
The remaining r1 in (33)' are all eigenvalues of A. Denote

p1(s) = (s - r1)"''; (34)

then (33)' can be written as 11 pp(A)x = 0, that is, x belongs to NN,,...pR. Clearly the p1
pairwise have no common zero, so Corollary 10 applies: x can be decomposed as a
sum of vectors in NPR . But by (34) and Definition (27), every x1 in NN, is a generalized
eigenvector. Thus we have a decomposition of x as a sum of generalized
eigenvectors, as asserted in Theorem 7.

We have shown earlier in Theorem 5, the Cayley-Hamiltonian Theorem, that the
characteristic polynomial PA of A satisfies pA(A) = 0. We denote by .0='0A the set
of all polynomials p which satisfy p(A) = 0. Clearly, the sum of two polynomials in
,0 belongs to J; furthermore, if p belongs to J, so does every multiple of p. Denote
by in = mA a nonzero polynomial of smallest degree in J; we claim that all p in J
are multiples of in. Because, if not, then the division process

p = qm + r

gives a remainder r of lower degree than in. Clearly, r = p - qm belongs to 31,
contrary to the assumption that in is one of lowest degree. Except for a constant
factor, which we fix so that the leading coefficient Of MA is 1, m = mA is unique. This
polynomial is called the minimal polynomial of A.

To describe precisely the minimal polynomial we return to the definition (27) of a
generalized eigenvector. We denote by Aim = N(a) the nullspace of (A - al)m.
The subspaces N,,, consist of generalized eigenvectors; they are indexed
increasingly, that is,

(35)

Since these are subspaces of a finite-dimensional space, they must be equal from a
certain index on. We denote by d = d(a) the smallest such index, that is,

Nd = nd+I = ... (35)'

but

Nd-I 0 Nd; (35)"

d(a) is called the index of the eigenvalue a.
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EXERCISE 7. Show that A maps Nd into itself.
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Theorem 11. Let A be an n x n matrix: denote its distinct eigenvalues by
a,,. .., ak, and denote the index of aj by dj. We claim that the minimal polynomial
MA is

h

MA(S) = [J(s - ai)d.

EXERCISE 8. Prove Theorem 11.

Let us denote Nd,(aj) by NU); then Theorem 7, the spectral theorem, can be
formulated as follows:

C^ = N(') ®N('-) ® ... ®N(k). (36)

The dimension of NU) equals the multiplicity of a1 as the root of the characteristic
equation of A. Since our proof of this proposition uses calculus, we postpone it until
Theorem I 1 of Chapter 9.

A maps each subspace N(j) into itself; such subspaces are called invariant under
A. We turn now to studying the action of A on each subspace; this action is
completely described by the dimensions of N1, N2, ... , Nd in the following sense.

Theorem 12. (i) Suppose the pair of matrices A and B are similar in the sense
explained in Chapter 5 [see equation (37)],

A = SBS-',

S some invertible matrix. Then A and B have the same eigenvalues:

(37)

a, = bi,...,ak = bk; (38)

furthermore, the nullspaces

N(aj) = nullspace of (A - a3I)

and

M(aj) = nullspace of (B - a1I)n,

have for all j and m the same dimensions:

dim N,,,(a3) = dim M,,,(aj). (39)
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(ii) Conversely, if A and B have the same eigenvalues, and if condition (39) about
the nullspaces having the same dimension is satisfied, then A and B are similar.

Proof. Part (i) is obvious; for if A and B are similar, so are A - al and B - aI,
and so is any power of them:

(A - al)"' = S(B - aI)"'S-1. (40)

Since S is a 1-to-1 mapping, the nullspaces of two similar matrices have the same
dimension. Relations (39) and in particular (38), follow from the observation.

The converse proposition will be proved in Appendix 15.
Theorems 4, 7, and 12 are the basic facts of the spectral theory of matrices. We

wish to point out that the concepts that enter these theorems-eigenvalue,
eigenvector, generalized eigenvector, index-remain meaningful for any mapping
A of any finite dimensional linear space X over C into itself. The three theorems
remain true in this abstract context and so do the proofs.

The usefulness of spectral theory in an abstract setting is shown in the following
important generalization of Theorem 7.

Theorem 14. Denote by X a finite-dimensional linear space over the complex
numbers, by A and B linear maps of X into itself, which commute:

AB = BA. (41)

Then there is a basis in X which consists of eigenvectors and generalized
eigenvectors of both A and B.

Proof. According to the Spectral Theorem, Theorem 7, equation (36), X can be
decomposed as a direct sum of generalized eigenspaces of A:

X=N(W)EB...(B- N(k),

NU) the nullspace of (A - ajI)`t1. We claim that B maps NU) into NU); for B is
assumed to commute with A, and therefore commutes with (A - aI)e:

B(A - aI)`tx = (A - aI)"Bx. (42)

If a is an eigenvalue and x belongs to NU), the left-hand side of (42) is 0; therefore so
is the right-hand side, which proves that Bx is in NUI. Now we apply the Spectral
Theorem to the linear mapping B acting on N(i) and obtain a spectral decomposition
of each N(j) with respect to B. This proves Theorem 14.

Corollary 15. Theorem 14 remains true if A, B are replaced by any number of
pairwise commuting linear maps.
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EXERCISE 9. Prove Corollary 15.
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In Chapter 3 we defined the transpose A' of a linear map. When A is a matrix, that
is, a map C" - C", its transpose AT is obtained by interchanging the rows and
columns of A.

Theorem 16. Every square matrix A is similar to its transpose AT.

Proof We have shown in Chapter 3, Theorem 6, that a mapping A of a space X
into itself, and its transpose A' mapping X' into itself, have nullspaces of the same
dimension. Since the transpose of A - aI is A' - al' it follows that A and A' have the
same eigenvalues, and that their eigenspaces have the same dimension.

The transpose of (A - al)' is (A' - al')'; therefore their nullspaces have the same
dimension. We can now appeal to Theorem 12 and conclude that A and A',
interpreted as matrices, are similar.

Theorem 17. Let X be a finite-dimensional linear space over C, A a linear
mapping of X into X. Denote by X' the dual of X, A': X' -> X' the transpose of A. Let
a and b denote two distinct eigenvalues of A: a 54 b, x an eigenvector of A with
eigenvalue a, l an eigenvector of A' with eigenvalue b. Then 1 and x annihilate each
other:

(1,x) = 0. (43)

Proof. The transpose of A is defined in equation (9) of Chapter 3 by requiring
that for every x in X and every I in X'

(A'/,x) = (1,Ax).

If in particular we take x to be an eigenvector of A and I to be an eigenvector of A',

Ax = ax, A'1=b1,

and we deduce that

b(l,x) = a(l,x).

Since we have taken a 54 b, (I, x) must be zero.

Theorem 17 is useful in calculating and studying the properties of expansions of
vectors x in terms of eigenvectors.
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Theorem 18. Suppose the mapping A has n distinct eigenvalues a1, ... , a,,.
Denote the corresponding eigenvectors of A by x, ...... x,,, those of A' by 11, ...
Then

(a)(11,xi)00,i= 1,...,n.
(b) Let

x = kjxj.

be the expansion of x as a sum of eigenvectors; then

ki = i = 1,...,n.

EXERCISE 10. Prove Theorem 18.

EXERCISE I I. Take the matrix

(44)

(45)

from equation (10)' of Example 2.

(a) Determine the eigenvector of its transpose.
(b) Use formulas (44) and (45) to determine the expansion of the vector (0, 1)'

in terms of the eigenvectors of the original matrix. Show that your answer
agrees with the expansion obtained in Example 2.

EXERCISE 12. In Example 1 we have determined the eigenvalues and
corresponding eigenvector of the matrix

C3
1

2)
4

as al =2,h1 = 1 21

Determine eigenvectors 11 and 12 of its transpose and show that

0 fori54 j(fi,hi)=
540 fori=j

EXERCISE 13. Show that the matrix

(01A= 0 1

1 1 0

has I as an eigenvalue. What are the other two eigenvalues?



CHAPTER 7

Euclidean Structure

In this chapter we abstract the concept of Euclidean distance. We gain no greater
generality; we gain simplicity, transparency and flexibility.

We review the basic structure of Euclidean spaces. We choose a point 0 as origin
in real n-dimensional Euclidean space; the length of any vector x in space, denoted
as 11 x 11, is defined as its distance to the origin.

Let us introduce a Cartesian coordinate system and denote the Cartesian
coordinates of x as xi , ... , x,,. By repeated use of the Pythagorean theorem we can
express the length of x in terms of its Cartesian coordinates.

xx,+ +x.
The scalar pmduct of two vectors x and y, denoted as (x, ),), is defined by

(x, y) = > xiyi

(1)

(2)

Clearly, the two concepts are related; we can express the length of a vector as

II x 112 = (X, X). (2)'

The scalar product is commutative:

(x, Y) = (Y' X) (3)

and bilinear:

(x + U, Y) _ (x,y) + (u,y),
(3)'

(x,y+v) _ (x,y)+(x,v).

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright ``.i 2007 John Wiley & Sons, Inc.
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Using these algebraic properties of scalar product we can derive the identity

(x - y,x - y) = (x,x) - 2(x,y) + ()',Y)

Using (2)', we can rewrite this identity as

IIx-YII2= IIx1I2 -2(x,y)+ IIYII? (4)

The term on the left is the distance of x from y, squared; the first and third terms
on the right are the distances of x and y from 0, squared. These three quantities
have geometric meaning; therefore they have the same value in any Cartesian
coordinate system. If follows therefore from (4) that also the scalar product (2) has
the same value in all Cartesian coordinate systems. By choosing special coordinate
axes, the first one through x, the second so that y is contained in the plane spanned by
the first two axes, we can uncover the geometric meaning of (x, y).

IxI x

The coordinates of the vector x and y in this coordinate system are
x = ( I I x 1 1 , 0. .. 0) and y = (II )' II cos 0 ...). Therefore

(x,Y)=IIx1IIIYIIcose, (5)

0 the angle between x and y.
The three points 0, x, y form a triangle whose sides are a = II x II, b = II y II,

c=IIx - y 11, forming an angle Oat 0:

Relations (4) and (5) can be written as

c' = a2 + b 2 - 2ab cos 0. (4)'
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This is the classical law of cosine; a special case of it, 0 = n/2, is the Pythagorean
theorem.

Most texts derive formula (5) for the scalar product from the law of cosine. This is
a pedagogical blunder, for most students have long forgotten the law of cosine, if
they ever knew it.

We shall give now an abstract, that is axiomatic, definition of Euclidean space.

Definition. A Euclidean structure in a linear space X over the reals is furnished
by a real-valued function of two vector arguments called a scalar product and
denoted as (x, y), which has the following properties:

(I) (x, y) is a bilinear function; that is, it is a linear function of each argument
when the other is kept fixed.

(ii) It is symmetric:

(x, Y) = (Y,x) (6)

(iii) It is positive:

(x,x) > 0 except for x = 0. (7)

Note that the scalar product (2) satisfies these axioms. We shall show now that,
conversely, all of Euclidean geometry is contained in these simple axioms.

We define the Euclidean length (also called norm) of x by

IIxII=(x,x)1,2.

(8)

A scalar product is also called an inner product, or a dot product.

Definition. The distance of two vectors x and y in a linear space with Euclidean
norm is defined as 11 x - y 11.

Theorem I (Schwarz Inequality). For all x, y,

I(x,Y)I<_IIx1IIIYII. (9)

Proof. Consider the function q(t) of the real variable t defined by

q(t) = II x + ty II? (10)

Using the definition (8) and properties (i) and (ii) we can write

q(t) = 11 x 112 + 2t(x, y) + t2 II Y
112. (10),
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Assume that y 96 0 and set t = -(x, y)/ II y 112 in (10)'. Since (10) shows that
q(t) > 0 for all t, we get that

11x112
-(x,y)2>0

I1y11

This proves (9). For y = 0, (9) is trivially true.

Note that for the concrete scalar product (2), inequality (9) follows from the
representation (5) of (x, y) as 11 x 1111 y 11 cos 9.

Theorem 2

11 x 11 = max(x,y), 11yI1=1.

EXERCISE I. Prove Theorem 2.

Theorem 3 (Triangle Inequality). For all x, y

IIx+y11:5 11x11+11y1I. (12)

Proof. Using the algebraic properties of scalar product, we derive, analogously to
(4), the identity

11X
+y112=11x112+2(x,y)+1Iy112

(12)'

and estimate the middle term by the Schwarz inequality.

Motivated by (5) we make the following definitions.

Definition. Two vectors x and y are called orthogonal (perpendicular), denoted
as x .1.. y, if

(x,y) = 0. (13)

From (12)' we deduce the Pythagorian theorem

IIx+y112=11x112+11y112 ifxly. (13)'

Definition. Let X be a finite-dimensional linear space with a Eulerian structure,
P), ... , x(") a basis for X. This basis is called orthononnal with respect to a given
Euclidean structure if

(x(i) x(k)) = J 0, for j # k,
(14)

1, forj = k.
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Theorem 4 (Gram-Schmidt). Given an arbitrary basis y( 1). ... , y(") in a finite-
dimensional linear space equipped with a Euclidean structure, there is a related basis
x(1), ..,x(") with the following properties:

(i) x(1),...,x(") is an orthonormal basis.
(ii) x(k) is a linear combination of y( I), .. , y(k), for all k.

Proof. We proceed recursively; suppose x(1>, .... x(k-0 have already been
constructed. We set

k-I
x(k) = C y(k) -

I

Cixtn

Since x(j), . , x(k-1) are already orthonormal, it is easy to see that x(k) defined above
is orthogonal to them if we choose

cr = (Y(k),x(r>), l = 1,...,k - 1.

Finally we choose c so that 11 x1 11 = 1.

Theorem 4 guarantees the existence of plenty of orthonormal bases. Given such a
basis, any x can be written as

X = ajx(j) (15)

Take the scalar product of (15) with x(1); using the orthonormality relations (14) we
get

(x, x(')) = at. (16)

Let y be any other vector in X; it can be expressed as

Y = E bkx(k)

Take the scalar product of y with x, using the expression (15). Then, using (14), we
get

(x, 3') _ ajbk (x(i) x(k)) _ ajbj. (17)

In particular, for y = x we get

1 1 X =1:a". (17)'
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Equation (17) shows that the mapping defined by (16),

x -> (ai.... ,a"),

carries the space X with a Euclidean structure into R", and carries the scalar product
of X into the standard scalar product (2) of R".

Since the scalar product is bilinear, for y fixed (x, y) is a linear function of x.
Conversely, we have the following theorem.

Theorem 5. Every linear function l(x) on a finite-dimensional linear space X
with Euclidean structure can be written in the form

1(x) = (x,y), (18)

y some element of X.

Proof. Introduce an orthonormal basis xi ), ... , x(") in X; denote the value of Ion
xik) by

l(x(k)) = bk.

Set y = >bkx(19)
It follows from orthonormality that (x(k),y) = bk. This shows that (18) holds for
x = xik), k = 1, 2, ... , n; but if two linear functions have the same value for all
vectors that form a basis, they have the same value for all vectors X. El

Corollary 5'. The mapping I -+ y is an isomorphism of the Euclidean space X
with its dual.

Definition. Let X be a finite-dimensional linear space with Euclidean structure,
Y a subspace of X. The orthogonal complement of Y, denoted as Y1, consists of all
vectors z in X that are orthogonal to every y in Y.

z in Y1 if (y, z) = 0 for all y in Y.

Recall that in Chapter 2 we denoted by Y1 the set of linear functionals that vanish
on Y The notation Y1 introduced above is consistent with the previous notation when
the dual of X is identified with X via (18). In particular, Y' is a subspace of X.

Theorem 6. For any subspace Y of X,

X=YEY1. (20)
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The meaning of (20) is that every x in X can be decomposed uniquely as

x = y + y1, y in Y, .y1 orthogonal to Y. (20)'

Proof. We show first that a decomposition of form (20)' is unique. Suppose we
could write

x = z + z1, zin Y, z1 in Y.

Comparing this with (20)' gives

Y-z=z1- Y.L.

It follows from this that y - z belongs both to Yand to Y1, and thus is orthogonal to
itself:

0=(Y-z, z1-y1)=(Y-z,Y-z)=11y-z 112,

but by positivity of norm, y - z = 0.
To prove that a decomposition of form (20)' is always possible, we construct an

orthonormal basis of X whose first k members lie in Y; the rest must lie in Y1. We can
construct such a basis by starting with an orthonormal basis in Y, then complete it to a
basis in X, and then orthonormalize the rest of the basis by the procedure described
in Theorem 3. Then x can be decomposed as in (15). We break this decomposition
into two parts:

k

x=>2aixul = +Y+Y1;
1 k+1

clearly, y lies in Y and y1 in Y1.

(21)

In the decomposition (20)', the component y is called the orthogonal projection of
x into Y, denoted by

y = Pyx.

Theorem 7. (1) The mapping Py is linear.
(ii) p2 = Py.

(22)

Proof Let w be any vector in X, unrelated to x, and let its decomposition (20)' be

w = z + z1, zin Y, z1 in Y1

Adding this to (20)' gives

x+w=(y+z)+ (y1+z1),
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the decomposition of x + w. This shows that Py(x + w) = Pyx + Pyw, Similarly,
Py(kx) = kPyx.

To show that Py = Py, we take any x and decompose it as in (20)'; x = y + y'.
The vector y = Px needs no further decomposition: Pyy = y.

Theorem 8. Let Y be a linear subspace of the Euclidean space X, x some vector
in X. Then among all elements z of Y, the one closest in Euclidean distance to x is
Pyx.

Proof. Using the decomposition (20)' of x we have

x-z=y-z+y1, y

Since y and z both belong to Y, so does y - z.
Therefore by the Pythagorean theorem (13)',

IIx-Z112 =IIy-ZII2 +IIy1 IIz;

clearly this is smallest when z = y. Since the distance between two vectors x, z is
11 x - z 11, this proves Theorem 8.

We turn now to linear mappings of a Euclidean space X into another Euclidean
space U. Since a Euclidean space can be identified in a natural way with its own
dual, the transpose of a linear map A of such a space X into U maps U into X. To
indicate this distinction, and for yet another reason explained at the end of this
chapter, the transpose of a map A of Euclidean X into U is called the adjoint of A and
is denoted by A*.

Here is the full definition of the adjoint A" of a linear mapping A of a Euclidean
space X into another Euclidean space U:

Given any it in U,

1(x) = (Ax, u)

is a linear function of x, According to Theorem 5, this linear function 1(x) can be
represented as (x, y), y in X. Therefore for all x in X

(x, )') = (Ax, u). (23)

The vector y depends on u; Since scalar products are bilinear, y depends linearly on
u; we denote this dependence as y = A*u, and rewrite (23) as

(x, A* u) = (Ax, u). (23)'

Note that A" maps U into X; the parentheses on the left denote the scalar product in
X, while those on the right denote the scalar product in U.

The next theorem lists the basic properties of adjointness:
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Theorem 9. (i) If A and B are linear mappings of X into U, then

(A+B)'=A`+B'.

(ii) If A is a linear map of X into U, while C is a linear map of U into V, then

(CA)' = A*C*.

(lii) If A is a 1-to-1 mapping of X onto U, then

(A-')* = (A*)-'.

(iv) (A*)* = A.

Proof. (i) is an immediate consequence of (23)'; (ii) can be demonstrated in two
steps:

(CAx, v) _ (Ax, C* v) _ (x, A'C*v).

(iii) follows from (ii) applied to A-' A = 1, 1 the identity mapping, and the
observation that 1` = 1. (iv) follows if we use the symmetry of the scalar product to
rewrite (23)' as

(u, Ax) = (A*u, x).

When we take X to be R" and U to be 68with their standard Euclidean structures,
and interpret A and A* as matrices, they are transposes of each other.

We present now an important application of the notion of the adjoint.
There are many situations where quantities x1, ... ,x cannot be measured

directly, but certain linear combinations of them,

can. Suppose that n such linear combinations have been measured. We can put all
this information in the form of a matrix equation

Ax=P, (24)

where p l, ... , p,,, are the measured values, and A is an m x n matrix. We shall
examine the case where the number m of measurements exceeds the number n of
quantities whose value is of interest to us. Such a system of equations is
overdetermined and in general does not have a solution. This is not as alarming as it
sounds, because no measurement is perfect, and therefore none of the equations is
expected to hold exactly. In such a situation, we seek that vector x that comes closest
to satisfying all the equations in the sense that makes II Ax - P 112 as small as
possible.
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For such an x to be determined uniquely, A cannot have nonzero nullvectors. For
if Ay = 0, and x a minimizer of II Ax - p II, then so is x + ky, k any number.

Theorem 10. Let A be an m x n matrix, m > n, and suppose that A has only the
trivial nullvector 0. The vector x that minimizes II Ax - p 112 is the solution z of

A*Az = A*p. (25)

Proof. We show first that equation (25) has a unique solution. Since the range of
A* is 118", (25) is a system of n equations for n unknowns. According to Corollary B
in Chapter 3, a unique solution is guaranteed if the homogeneous equation

A*Ay = 0 (25)'

has only the trivial solution y = 0. To see that this is the case, take the scalar product
of (25)' with y. We get, using the definition (23)' of adjointness, 0 = (A*Ay,y) =
(Ay, Ay) =11 Ay 112. Since 11 11 is positive, it follows that Ay = 0. Since we have
assumed that A has only the trivial nullspace, y = 0 follows.

A maps 08" into an n-dimensional subspace of 08"'. Suppose z is a vector in U8"
with the following property:

Az - p is orthogonal to the range of A. We claim that such a z minimizes
II Ax - p 112. To see this let x be any vector in 08"; split it as x = z + y; then

Ax - p = A(z + y) - p = Az - p + Ay.

By hypothesis Az - p and Ay are orthogonal; therefore by the Pythagorean
theorem,

IIAx -p1I2=IIAz-pII2+IIAy II2.

this demonstrates the minimizing property of z.
To find z, we write the condition imposed on z in the form

(Az - p, Ay) = 0 for all y.

Using the adjoint of A we can rewrite this as

(A* (Az - p), y) = 0 for all Y.

The range of A* is 118", so for this condition to hold for all y, A*(Az - p) must be 0,
which is equation (25) for z.

Theorem 11. An orthogonal projection Py defined in equation (22) is its own
adjoint,

Py = Py.
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EXERCISE 2. Prove Theorem 11.

We turn now to the following question: what mappings M of a Euclidean space
into itself preserve the distance of any pair of points, that is, satisfy for all x, y,

II M(x)-M(y) II=IIx - Y II ? (26)

Such a mapping is called an isomnetry. It is obvious from the definition that the
composite of two isometries is an isometry. An elementary example of an isometry is
translation:

M(x)=x+a,

a some fixed vector. Given any isometry, one can compose it with a translation and
produce an isometry that maps zero to zero. Conversely, any isometry is the
composite of one that maps zero to zero and a translation.

Theorem 12. Let M be an isometric mapping of a Euclidean space into itself
that maps zero to zero:

M(O) = 0. (27)

(i) M is linear.

(ii) M*M=I. (28)

Conversely, if (28) is satisfied, M is an isometry.
(iii) M is invertible and its inverse is an isometry.
(iv) det M = ±1.

Proof. It follows from (26) with y = 0 and (27) that

IIM(x)II=IIxII

Now let us abbreviate the action of M by':

M(x) = a', M(y) = y'.

By (29),

IIxII=IIxII, IIy 11=IIxII

By (26),

(29)

(29)'

11 x'-y 11=11X-Y11.
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Square and use expansion (4) on both sides:

II x' 112-2(x,y)+IIy 112=11x112-2(x,Y)+IIY112.

Using (29)', we conclude that

(x',)') = (X, Y);

that is, M preserves the scalar product.
Let z be any other vector, z' = M(z); then, using (4) twice we get

Ilz' - X, - .v'112 =11z'1I2+11Y'112+IIx 112

-2(z',x) -2(z',.v)+2(x',)1).

Similarly,

IIz-x-Y112=11zII2+IIY112+IIx112-2(z,x)-2(z,y)+2(x,y).

Using (29)' and (30) we deduce that

II z'-x'-Y' 112=11 z - x - Y 112

(30)

We choose now z = x + y; then the right-hand side above is zero; therefore so is
11

z' - x' - y' 112. By positive definiteness of the norm z' - x' - y = 0. This proves
part (i) of Theorem 12.

To prove part (ii), we take relation (30) and use the adjointness identity (23)':

(Mx, My) = (x, M*My) = (x, y)

for all x and y, so

(x, M*My - Y) = 0.

Since this holds for all x, it follows that M*My - y is orthogonal to itself, and so, by
positiveness of norm, that for all y,

M*My-y=0.

The converse follows by reversing the steps: this proves part (ii).
It follows from (29) that the nullspace of M consists of the zero vector; it follows

then from Corollary (B)' of Chapter 3 that M is invertible. That M- 1 is an isometry is
obvious. This proves (iii).

It was pointed out in equation (33) of Chapter 5 that for every matrix det M* _
det M; it follows from (28) and the product rule for determinants [see (18)
in Chapter 5] that (det M)2 = det I = 1, which implies that

detM=f1. (31)

This proves part (iv) of Theorem 12.
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The geometric meaning of (iv) is that a mapping that preserves distances also
preserves volume.

Definition. A matrix that maps R" onto itself isometrically is called orthogonal.

The orthogonal matrices of a given order form a group under matrix
multiplication. Clearly, composites of isometries are isometric, and so, by part
(iii) of Theorem 12, are their inverses.

The orthogonal matrices whose determinant is plus 1 form a subgroup, called the
special orthogonal group. Examples of orthogonal matrices with determinant plus I
in three-dimensional space are rotations; see Chapter 11.

EXERCISE 3. Construct the matrix representing reflection of points in 1183 across
the plane X3 = 0. Show that the determinant of this matrix is -1.

EXERCISE 4. Let R be reflection across any plane in R3.

(1) Show that R is an isometry.
(ii) Show that R2 = I.
(iii) Show that R* = R.

We recall from Chapter 4 that the ijth entry of the matrix product AB is the scalar
product of the ith row of A with the jth column of B. The ith row of M* is the
transpose of the ith column of M. Therefore the identity M*M = I characterizing
orthogonal matrices can be formulated as follows:

Corollary 12'. A matrix M is orthogonal iff its columns are pairwise orthogonal
unit vectors.

EXERCISE 5. Show that a matrix M is orthogonal iff its rows are pairwise
orthogonal unit vectors.

How can we measure the size of a linear mapping A of one Euclidean space X into
another Euclidean space U? Recall from a rigorous course on the foundations of
calculus the concept of least upper bound, also called supremum, of a bounded set of
real numbers, abbreviated as sup. Each component of Ax is a linear function of the
components of x; II Ax II2 is a quadratic function of the components of x, and
therefore the set of numbers II Ax II2, II X II2 = 1 is a bounded set.

Definition

II A 11= sup II Ax II (32)
16x11=I

Note that 11 Ax 11 is measured in U, 11 x 11 in X. 11 A 11 is called the nonn of A.
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Theorem 13. Let A be a linear mapping from the Euclidean space X into the
Euclidean space U, where II A 11 is its norm.

(i)
IIAzII:5 IIA1111zII for all z in X. (33)

II A 11= sup (Ax, v). (34)

Proof. (i) follows for unit vectors z from the definition (32) of II A 11. For any
z 0 0, write z = kx,x a unit vector; since II Akx II = II kAx II = kill Ax 11 and

11 kx 11= IkI 11 x 11, (33) follows. For z = 0, (33) is obviously true.
(ii) According to Theorem 2,

11u11=max(u,v), 11v11=1.

Set Ax = u in definition (32), and we obtain (34).

EXERCISE 6. Show that Iail < 11 A 11

Theorem 14. For A as in Theorem 13, we have the following:

(i) II kA II = IkI II A II for any scalark.

(ii) For any pair of linear mappings A and B of X into U,

11A+Bll<IIA11+11B11. (35)

(iii) Let A be a linear mapping of X into U, and let C be a linear mapping of U
into V; then

IICA II<_IICIIIIAII. (36)

IIA 11=11 All.

Proof. (i) follows from the observation that 11 kAx 11= lkl 11 Ax 11.
(ii) By the triangle inequality (12), for all x in X we obtain

(37)

II (A + B)x 11=11 Ax + Bx 11 <11 Ax 11 + 11 Bx 11.
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The supremum of the left-hand side for II x II = I is II A + B II. The right-hand side
is a sum of two terms; the supremum of the sum is < the sum of the suprema, which
is IIAII+IIBII-

(iii) By inequality (33),

IIcAxII<-IICIIIIAx 1I.

Combined with (33), this yields

IICAxiI<_IICIIIIAIIIIxiI

Taking the supremum for all unit vectors x gives (36).
(iv) According to (23)',

(Ax,v) = (x,A"v);

since the scalar product is a symmetric function, we obtain

(Ax, v) = (A*v,x).

Take the supremum of both sides for all x and v, II x II = 1, II v II = 1. According to
(34), on the left-hand side we get II A II, and on the right-hand side we obtain
IIA*II. o

The following result is enormously useful:

Theorem 15. Let A be a linear mapping of a finite-dimensional Euclidean
space X into itself that is invertible. Denote by B another linear mapping of X into X
close to A in the sense of the following inequality:

IIA - B II<1/IIA-' II. (38)

Then B is invertible.

Proof. Denote A - B = C, so that B = A - C. Factor B as

B = A(I - A-'C) = A(I - S),

where S = A-'C.
We have seen in Chapter 3 that the product of invertible maps is invertible;

therefore it suffices to show that I - S is invertible. We see that it suffices to show
that the nullspace of 1- S is trivial. Suppose not; that is, (I - S)x = 0, x # 0. Then
x = Sx; using the definition of the norm of S,

IIx1I=II Sxii<_II S IIIIxII.
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Since x 54 0, it follows that
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1<_IISI1 (39)

But according to part (iii) of Theorem 14,

IIS11=11A-'CII:5 IIA-' II11c11<1,

where in the last step we have used inequality (38): 11 C II < I / II A II -' This
contradicts (39). O

Note. In this proof we have used the finite dimensionality of X. A proof of
Theorem 15 given in Chapter 15 is valid for infinite-dimensional X.

We recall now another concept from a rigorous calculus course:
Convergence. A sequence of numbers {ak} tends to a,

lim ak = a,

if lak - al tends to zero. Recall furthermore the notion of a Cauchy sequence of
numbers {ak}; it is a sequence for which lak - ail tends to zero as j and k tend to oo.
A basic property of real numbers is that every Cauchy sequence of numbers
converges to a limit.

This property of real numbers is called completeness.
A second basic notion about real numbers is local compactness: Every bounded

sequence of real numbers contains a convergent subsequence.
We now show how to extend these notions and results from numbers to vectors in

a finite-dimensional Euclidean space.

Definition. A sequence of vectors {xk} in a linear space X with Euclidean
structure converges to the limit x:

lim xk = xkx

if 11 xk - x II tends to zero as k -> oo.

Theorem 16. A sequence of vectors {xk} in a Euclidean space X is called a
Cauchy sequence if II xk - xj II -> 0 as k and j -> oo.

(i) Every Cauchy sequence in a finite-dimensional Euclidean space converges to
a limit.

A sequence of vectors {Xk } in a Euclidean space X is called bounded if 11 xk 11:5 R
for all k, R some real number.

(ii) In a finite-dimensional Euclidean space every bounded sequence contains a
convergent subsequence.
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Proof. (i) Let x and y be two vectors in X, a1 and bj their jth component; then

Ia! - bbl <- IIx - yII.

Denote by ak,j thejth component of xk. Since {xk} is a Cauchy sequence, it follows
that the sequence of numbers {akj} also is a Cauchy sequence. Since the real
numbers are complete, the {akr } converge to a limit a1. Denote by x the vector whose
components are (a 1, . . . , a,,). From the definition of Euclidean norm,

a

11xk-x1121ak.j -ai12, (40)

it follows that lim xk = x.
(ii) Since lat. I < 11 xk 11, it follows that IakiI < R for all k. Because the real

numbers are locally compact, a subsequence of (a*, I) converges to a limit ai.
This subsequences of k - s contains a further subsubsequence such that {ak.2}

converges to a limit a2. Proceeding in this fashion we can construct a subsequence of
{xk} for which all sequences {akj}, converge to a limit aa.l.... , n, where n is the
dimension of X. Denote by x the vector whose components are From
(40) we deduce that the subsequence of {xk} converges to x.

It follows from part (ii) of Theorem 16 that the supremum in the definition (32) of

II A 11 is a maximum:

IIAII=Imax 11 Ax 11. (32)'

It follows from the definition of supremum that II A II cannot be replaced by any
smaller number that is an upper bound of II Ax 11, II x II = 1. It follows that there is a
sequence of unit vectors {xk}, 11 xk 11= 1, such that

slim 11AxLI1=IIAII

According to Theorem 16, this sequence has a subsequence that converges to a limit
x. This vector x maximizes 11 Az 11 for all unit vectors z.

Part (ii) of Theorem 16 has a converse:

Theorem 17. Let X be a linear space with a Euclidean structure, and suppose
that it is locally compact-that is, that every bounded sequence {xk} of vectors in X
has a convergent subsequence. Then X is finite dimensional.

Proof. We shall show that if X is not finite dimensional, then it is not locally
compact. Not being finite dimensional means that given any linearly independent set
of vectors yI, ... yk, there is a vectoryk+i that is not a linear combination of them. In
this way we obtain an infinite sequence of vectors yi,y2, ... such that every finite set
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{y1, ... , yk } is linearly independent. According to Theorem 4, we can apply the
Gram-Schmidt process to construct pairwise orthogonal unit vectors {x1, ... xk},
which are linear combinations of yi, ... , yk. For this infinite sequence

II xk -xj II2=II xk II2 -2(xk,xj)+ II xj II'= 2

for all k j. Therefore this sequence, which is bounded, contains no convergent
subsequence. 0

Theorem 17 is a very useful, and therefore important criterion for a Euclidean
space to be finite dimensional. In Chapter 14 we shall show how to extend it to all
normed linear spaces.

In Appendix 12 we shall give an interesting application.

Definition. A sequence {A"} of mappings converges to a limit A if

lim II A,, -All=0.

EXERCISE 7. Show that {A} converges to A iff for all x, A,,x converges to Ax.

Note. The result in Exercise 7 does not hold in infinite-dimensional spaces.
We conclude this chapter by a brief discussion of complex Euclidean structure. In

the concrete definition of complex Euclidean space, definition (2) of the scalar
product in R" has to be replaced in C" by

(x, y) = E xiy;, (41)

where the bar-denotes the complex conjugate. The definition of the adjoins of a
matrix is as in (23)', but in the complex case has a slightly different interpretation.
Writing

A = (aj), (Ax); a,jxj

and using the (41) definition of scalar product we can write

(Ax, u) ayxj) u,.
i j

This can be rewritten as

xj (raijul)

which shows that (Ax, u) = (x, A"u), where

(A*u)j = aFjute
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that is, the adjoint A` of the matrix A is the complex conjugate of the transpose of A.
We now define the abstract notion of a complex Euclidean space.

Definition. A complex Euclidean structure in a linear space X over the complex
numbers is furnished by a complex valued function of two vector arguments, called a
scalar product and denoted as (x, y), with these properties:

(i) (x, y) is a linear function of x for y fixed.
(ii) Conjugate symmetry: for all x, y,

(x,Y) = (Y,x) (42)

Note that conjugate symmetry implies that (x, x) is real for all x.
(iii) Positivity:

(x, x) > 0 for all x 36 0.

The theory of complex Euclidean spaces is analogous to that for real ones, with a few
changes where necessary. For example, it follows from (i) and (ii) that for x fixed,
(x, y) is a skew linear function of y, that is, additive in y and satisfying for any
complex number k,

(x, ky) = k(x, y). (43)

Instead of repeating the theory, we indicate those places where a slight change is
needed. In the complex case identity (12)' is

IIx+Y 112=11x112+(x,y)+(y,x)+IIY 112

=11 x 112 + 2Re(x, ),) + 11 Y 112, (44)

where Re k denotes the real part of the complex number k.

EXERCISE 8. Prove the Schwarz inequality for complex linear spaces with a
Euclidean structure.

EXERCISE 9. Prove the complex analogues of Theorems 6, 7, and 8.

We define the adjoint A* of a linear map A of an abstract complex Euclidean
space into itself by relation (23)' as before:

(x,A*u) = (Ax, u).

EXERCISE 10. Prove the complex analogue of Theorem 9.
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We define isometric maps of a complex Euclidean space as in the real case:

II Mx II=IIxII

Definition. A linear map of a complex Euclidean space into itself that is
isometric is called unitary.

EXERCISE 11. Show that a unitary map M satisfies the relations

M"M = 1

and, conversely, that every map M that satisfies (45) is unitary.

EXERCISE 12. Show that if M is unitary, so is M- 1 and M*.

(45)

EXERCISE 13. Show that the unitary maps form a group under multiplication.

EXERCISE 14. Show that for a unitary map M, Idet MI = I.

EXERCISE 15. Let X be the space of continuous complex-valued functions on
[-1, 1] and define the scalar product in X by

(f,g) = ff(s)(s)ds.I

Let m(s) be a continuous function of absolute value 1: Im(s) I = 1, -1 < s < 1.
Define M to be multiplication by m:

(Mf)(s) = m(s)f(s).

Show that M is unitary.

We give now a simple but useful lower bound for the norm of a matrix mapping a
complex Euclidean space X into itself. The definition of the norm of such a matrix is
the same as in the real case, given by equation (32)':

IIAII=II`"Iax1IAxII

Let A be any square matrix with complex entries, h one of its eigenvectors,
chosen to have length 1, and a the eigenvalue:

Ah = ah, 1 1h1 .

Then

IIAh1I=IIah1I=Ial.
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Since II A II is the maximum of II Ax II for all unit vectors x, it follows that
II A II > Ial. This is true for every eigenvalue; therefore

IIAII?maxIa;I, (46)

where the a; range over all eigenvalues of A.

Definition. The spectral radius r(A) of a linear mapping A of a linear space
into itself is

r(A) = max I ail , (47)

where the aj range over all eigenvalues of A. So (46) can be restated as follows:

11 All >_ r(A). (48)

Recall that the eigenvalues of the powers of A are the powers of the eigenvalues
of A:

Ajh = A.

Applying (48) to Ai, we conclude that

II AN II > r(AY.

Taking the jth root gives

II Ai
II'li > r(A)-

Theorem 18. As j tends to oc, (48)j tends to be an equality; that is,

lim II AN 11 0 = r(A).i-x

(48)j

A proof will be furnished in Appendix 10.
We shall give now a simple and useful upper bound for the norm of a real m x n

matrix

A = (aj),

mapping R' into R'. For any x in R', set Ax = y, y in R'. The components of y are
expressed in terms of the components of x as follows:

Yi = L agxj.
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Estimate the right-hand side using the Schwarz inequality:

yz =
(auxi)< (>a)(xi2).

adding all these inequalities, i = 1,.. . , m, we get

2 zy2 < aM
Using the definition of norm in Euclidean space [see equation (1)], we can rewrite
inequality (49) as

11y112_< (sat.) Ilxll'
,i

Take the square root of this inequality; since y = Ax, we can write it as

1 /2

Ax11<(Ea) Ilxll

The definition of the norm A 11 of the matrix A is

It follows from (50) that

sup 11 Ax 11, I1x11=1.

I/2

IIAII a)

this is the upper bound for A II we set out to prove.

) 1/2

EXERCISE 16. Prove the following analogue of (51) for matrices with complex
entries:

iJ

EXERCISE 17. Show that

(49)

(50)

(51)

(51)'

E Iai12 = trAA'. (52)
ij
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EXERCISE 18. Show that

trAA* = tr A* A.

99

EXERCISE 19. Find an upper bound and a lower bound for the norm of the 2 x 2
matrix

The quantity (F_ IagI2)I12 is called the Hilbert-Schmidt norm of the matrix A.

Let T denote a 3 x 3 matrix, its columns x, y, and z:

T = (x, y, z).

The determinant of T is, for x and y fixed, a linear function of z:

det (x, y, z) = 1(z). (53)

According to Theorem 5, every linear function can be represented as a scalar
product:

1(z) = (IV, Z),

where w is some vector depending on x and y:

w = w(x,Y)

(54)

Combining (53) and (54) gives

det (x, y, z) = (w(x, y), z). (55)

We formulate the properties of the dependence of w on x and y as a series of

exercises:

EXERCISE 20. (i) w is a bilinear function of x and y. Therefore we write w as a
product of x and y, denoted as

w=xxy,

and called the cross product.
(ii) Show that the cross product is antisymmetric:

yxx= -xXy.
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(iii) Show that x x y is orthogonal to both x and y.
(iv) Let R be a rotation in R3; show that

(Rx) x (Ry) = R(x x y).

(v) Show that

11xx3'11=±11x1111y11sin0,

where 8 is the angle between x and )'.
(vi) Show that

1 0 0
0 x 1 = 0
0 0 1

(vii) Using Exercise 16 in Chapter 5, show that

fa d bf - ce
b x e J = cd - af
c f ae - bd

EXERCISE 2I. Show that in a Euclidean space every pair of vector satisfies

11u+vIII +11u-v112=211u1122+211v1I2 (56)



CHAPTER 8

Spectral Theory of Self-Adjoint
Mappings of a Euclidean Space
into Itself

In this chapter we shall study mappings A of Euclidean spaces into themselves that
are self-adjoint-that is, are their own adjoints:

A* = A.

When A acts on a real Euclidean space, any matrix representing it in an orthonormal
system of coordinates is symmetric, that is,

Aij = Aji.

Such mappings are therefore also called symmetric. When A acts on a complex
Euclidean space, its matrix representations are conjugate symmetric;

Aij = Aji.

Such mappings are also called Hennitean. We saw in Theorem I 1 of Chapter 7 that
orthogonal projections are self-adjoint. Below we describe another large class of
self-adjoint matrices. In Chapter 11 we shall see that matrices that describe the
motion of mechanical systems are self-adjoint.

Definition. Let M be an arbitrary linear mapping in a Euclidean space, We
define its self-adjoint part as

M+MsM = (1)
2

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright c'! 2007 John Wiley & Sons, Inc.
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EXERCISE I. Show that

Re (x, Mx) = (x, M,.x). (2)

Let (xi, ... , f (x) be a real-valued twice-differentiable function of n real
variables x1,. .. ,x,, written as a single vector variable x. The Taylor approximation
to f at a up to second order reads

f(a + y) = f (a) + 1(y) + 2 q(y) + I IyI I2e(I Iy1I),

where e(d) denotes some function that tends to 0 as d 0,1(y) is a linear function of
y, and q(y) is a quadratic function. A linear function has the form (see Theorem 5 of
Chapter 7)

1(y) = (y, g); (4)

LINEAR ALGEBRA AND ITS APPLICATIONS

(3)

g is the gradient off at a; according to Taylor's theorem

of
gi=ax

a=a

(5)

The quadratic function q has the form

q(y) = hiiyiyi.
i.i

The matrix (hi) is called the Hessian H off; according to Taylor's theorem,

a2
hii = .l

311(j ax; r=a

(6)

(7)

Employing matrix notation and the Euclidean scalar product, we can write q, given
by (4), in the form

q(y) = (y, Hy). (8)

The matrix H is self-adjoint, that is, H* = H :

hi = hi;; (9)

this follows from definition (5), and the fact that the mixed partials of a twice-
differentiable function are equal.

Suppose now that a is a critical point of the function f, that is where grad f = g
is zero. Around such a point Taylor's formula (3) shows that the behavior off is
governed by the quadratic term. Now the behavior of functions near critical points
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is of fundamental importance for dynamical systems, as well as in geometry; this is
what gives quadratic functions such an important place in mathematics and makes
the analysis of symmetric matrices such a central topic in linear algebra.

To study a quadratic function it is often useful to introduce new variables:

Ly = z, (10)

where L, is some invertible matrix, in terms of which q has a simpler form.

Theorem 1. (a) Given a real quadratic form (6) it is possible to change
variables as in (10) so that in terms of the new variables, z, q is diagonal, that is, of
the form

n

q(L- ' z) _ d; ?.

(b) There are many ways to introduce new variables which diagonalize q;
however, the number of positive, negative, and zero-diagonal terms d; appearing in
(11) is the same in all of them.

Proof. Part (a) is entirely elementary and constructive. Suppose that one of the
diagonal elements of q is nonzero, say h # 0. We then group together all terms
containing y,:

n n

q(y) = h, iy2l + hi;yly; + h;;y;yi.

Since H is symmetric, h;, = hid; so we can write q as

12 1z

hn
(YI

+ h,-,' h,;y; f --hi > hIJ)y) .

2 2

Set

We can then write

n

yi+hii h11y1=zi.
2

q(y) = huzi + q2 (Y),

(12)

(13)

where q2 depends only on y2,...,y,,.

If all diagonal terms of q are zero but there is some nonzero off-diagonal term, say
h12 = h21 # 0, then we introduce yl + y2 and y, - y2 as new variables, which
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produces a nonzero diagonal term. If all diagonal and off-diagonal terms are zero,
then q(y) __ 0 and there is nothing to prove.

We now apply induction on the number of variables n; using (13) shows that if the
quadratic function q2 in (n - 1) variables can be written in form (11), then so can q
itself. Since y2, ... , y,, are related by an invertible matrix to Z2, , z,,, it follows
from (12) that the full set y is related to z by an invertible matrix.

EXERCISE 2. We have described above an algorithm for diagonalizing q;
implement it as a computer program.

We turn now to part (b); denote by p+, p_, and po the number of terms in (11) that
are positive, negative, and zero, respectively. We shall look at the behavior of q on
subspaces S of li". We say that q is positive on the subspace S if

q(u) > 0 for every u in S, u 0 0. (14)

Lemma 2. The dimension of the largest subspace of 18" on which q is positive
is p+:

q positive on S.p+ = max dim S.

Similarly,

(15)

p_ = max dim S, q negative on S. (15)'

Proof. We shall use representation (11) for q in terms of the coordinates
zi. . . . . z ; suppose we label them so that d1,.. . , do are positive, p = p+, the rest
nonpositive. Define the subspace S+ to consist of all vectors for which
z,,+i = = Zn = 0. Clearly dim S+ = p+, and equally clearly, q is positive on
S+. This proves that p+ is less than or equal to the right-hand side of (15). We claim
that the equality holds. Let S be any subspace whose dimension exceeds pi.
For any vector u in S, define P. as the vector whose p4 components are the same as
the first p+ components of u, and the rest of the components are zero. The
dimension p+ of the target space of this map is smaller than the dimension of the
domain space S. Therefore, according to Corollary A of Theorem 2, Chapter 3,
there is a nonzero vectory in the nullspace of P. By definition of P, the first p+ of the
z-components of this vectory are zero. But then it follows from (11) that q(y) < 0;
this shows that q is not positive on S. This proves (15); the proof of (15)' is
analogous.

Lemma 2 shows that the numbers p_ and p+ can be defined in terms of the
quadratic form q itself, intrinsically, and are therefore independent of the special
choice of variables that puts q in form (11). Since p+ + p_ + po = it, this proves part
(b) of Theorem 1.
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Part (b) of Theorem I is called the law of inertia.

EXERCISE 3. Prove that

p+ + po = max dim S, q > 0 on S

and

p_ + po = max dim S, q < 0 on S.

Using form (6) of q we can reinterpret Theorem 1 in matrix terms. It is convenient
for this purpose to express yin terms of z, rather than the other way around as in (10).
So we multiply (10) by L- 1, obtaining

y = Mz, (16)

where M abbreviates L-'. Setting (16) into (8) gives, using the adjoint of M,

q(y) = (y, Hy) = (Mz, HMz) = (z, M"HMz). (17)

Clearly, q in terms of z is of form (11) iff M*HM is a diagonal matrix. So part (a) of
Theorem I can be put in the following form:

Theorem 3. Given any real self-adjoint matrix H, there is a real invertible
matrix M such that

M*HM = D, (18)

D a diagonal matrix.

For many applications it is of utmost importance to change variables so that the
Euclidean length of the old and the new variables is the same:

IIy112=IIz11?

For the matrix M in (16) this means that M is an isometry. According to (28) of
Chapter 7, this is the case iff M is orthogonal, that is, satisfies

M*M = I. (19)

It is one of the basic theorems of linear algebra, nay, of mathematics itself, that given
a real-valued quadratic form q, it is possible to diagonalize it by an isometric change
of variables. In matrix language, given a real symmetric matrix H, there is a real
invertible matrix M such that both (18) and (19) hold.

We shall give two proofs of this important result. The first is based on the spectral
theory of general matrices presented in Chapter 6, specialized to self-adjoint
mappings in complex Euclidean space.
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We recall from Chapter 7 that the adjoins H* of a linear map H of a complex
Euclidean space X into itself is defined by requiring that

(Hx,y) = (x, H*y) (20)

hold for all pairs of vectors x,y. Here the bracket (,) is the conjugate-symmetric
scalar product introducd at the end of Chapter 7. A linear map H is called
self-adjoins if

H" = H.

For H self-adjoint, (20) becomes

(Hx,y) = (x, Hy). (20)'

Theorem 4. A self-adjoint map H of complex Euclidean space X into itself has
real eigenvalues and a set of eigenvectors that form an orthonormal basis of X.

Proof. According to the principal result of spectral theory, Theorem 7 of Chapter
6, the eigenvectors and generalized eigenvectors of H span X. To deduce Theorem 4
from Theorem 7, we have to show that a self-adjoint mapping H has the following
additional properties:

(a) H has only real eigenvalues.
(b) H has no generalized eigenvectors, only genuine ones.
(c) Eigenvectors of H corresponding to different eigenvalues are orthogonal.

(a) If a + ib is an eigenvalue of H, then ib is an eigenvalue of H - al, also self-
adjoint. Therefore, it suffices to show that a self-adjoint H cannot have a purely
imaginary eigenvalue ib. Suppose it did, with eigenvector z:

Hz = ibz.

Take the scalar product of both sides with z:

(Hz, z) = (ibz, z) = ib(z, z).

Setting both x and y equal to z in (20)', we get

(Hz, z) _ (z, Hz).

(21)

(21)'

Since the scalar product is conjugate symmetric, we conclude that the two sides of
(21)' are conjugates. Since they are equal, the left-hand side of (21) is real. Therefore
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so is the right-hand side; since (z, z) is positive, this can be only if b = 0, as asserted
in (a).

(b) A generalized eigenvector z satisfies

Hdz = 0; (22)

here we have taken the eigenvalue to be zero, by replacing H with H - al. We want
to show that then z is a genuine eigenvector:

Hz = 0. (22)'

We take first the case d = 2:

H2z = 0; (23)

we take the scalar product of both sides with z:

(H 2Z, z) = 0. (23)'

Using (20)' with x = Hz, y = z, we get

(H 2Z, z) = (Hz, Hz) = II Hz 112;

using (23)', we conclude that II Hz II = 0, which, by positivity, holds only when
Hz=0.

We do now an induction on d; we rewrite (22) as

H2Hd-2z = 0.

Abbreviating Hd-2z as w, we rewrite this as H 2w = 0; this implies, as we have
already shown, that Hw = 0. Using the definition of w this can be written as

Hd-IZ = 0.

This completes the inductive step and proves (b).
(c) Consider two eigenvalues a and b of H, a # b:

Hx = ax, Hy = by.

We form the scalar product of the first relation with y and of the second with x; since
b is real we get

(Hx,y) = a(x,y), (x,Hy) = b(x,y)
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By (20)' the left-hand sides are equal; therefore so are the right-hand sides. But for
a 0 b this can be only if (x,),) = 0. This completes the proof of (c).

Definition. The set of eigenvalues of H is called the spectrum of H.

We show now that Theorem 4 has the consequence that real quadratic forms can
be diagonalized by real isometric transformation. Using the matrix formulation
given in Theorem 3, we state the result as follows.

Theorem W. Given any real self-adjoint matrix H, there is an orthogonal matrix
M such that

M*HM = D, (24)

D a diagonal matrix whose entries are the eigenvalues of H. M satisfies M°M = I.

Proof. The eigenvectors f of H satisfy

Hf = af. (25)

H is a real matrix, and according to (a), the eigenvalue a is real. It follows from (25)
that the real and imaginary parts off also are eigenvectors. It follows from this easily
that we may choose an orthonormal basis consisting of real eigenvectors in each
eigenspace Na. Since by (c), eigenvectors belonging to distinct eigenvalues are
orthogonal, we have an orthonormal basis of X consisting of real eigenvectors f of H.
Every vector y in X can be expressed as a linear combination of these eigenvectors:

Y = E zjf (25)'

For y real, the zj are real. We denote the vector with components zj as z:
z = (zl, ... , zn). Since the {} form an orthonormal basis,

IIYII2z =11211? (26)

Letting H act on (25)', we get, using (25), that

Hy = E zjaj . (25)"

Setting (25) and (25)' into (6) we can express the quadratic form q as

q(),) = (Y, Hy) _ ajzj .
(26)'

This shows that the introduction of the new variables z diagonalizes the quadratic
form q. Relation (26) says that the new vector has the same length as the old.
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Denote by M the relation of z to y:

y = Mz.

Set this into (26)'; we get

q(y) = (y, Fly) = (Mz, HMz) = (z, M'HMz).

Using (26)', we conclude that M'HM = D, as claimed in (24). This completes the
proof of Theorem 4', O

Multiply (24) by M on the left and M" on the right. Since MM' also equals I for
an isometry M, we get

H = MDM". (24)'

EXERCISE 4. Show that the columns of M are the eigenvectors of H.

We restate now Theorem 4, the spectral theorem for self-adjoint maps, in a
slightly different language. Theorem 4 asserts that the whole space X can be
decomposed as the direct sum of pairwise orthogonal eigenspaces:

X = N(l) (D ... B N(k) (27)

where N(h consists of eigenvectors of H with real eigenvalues ai, ai 54 ai for j 54 i.
That means that each x in X can be decomposed uniquely as the sum

x = x(1) + ... + x(k), (27)'

where xU) belongs to NW. Since N(j) consists of eigenvectors, applying H to
(27)' gives

Hx = a x(') + ... + akx(k). (28)

Each x(j) occurring in (27)' is a function of x; we denote this dependence as

xfi) = Pi (x) .

Since the NU) are linear subspaces of X, it follows that x(j) depends linearly on x, that
is, the Pi are linear mappings. We can rewrite (27)' and (28) as follows:

I = E Pi, (29)
i

H = E ajPj. (30)
i
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Claim: The operators PP have the following properties:

(a) PjPx = 0 forj # k, Pi' = PJ.. (31)

(b) Each Pf is self-adjoint:

P;" = Pi. (32)

Proof. (a) Relations (31) are immediate consequences of the definition of P.
(b) Using the expansion (27)' for x and the analogous one for y we get

(P;x,Y) = (xu),Y) = (xc-1),
YY) ) _

(xul,,,u) ) _ (xU),yU)).

where in the last step we have used the orthogonality of NW to xl'1 forj # i. Similarly
we can show that

(x, PiY) _ (x U) yU)).

Putting the two together shows that

(Pjx,Y) _ (x, PiY)

According to (20), this expresses the self-adjointness of Pp This proves
(32).

We recall from Chapter 7 that a self-adjoint operator P which satisfies P2 = P is
an orthogonal projection. A decomposition of the form (29), where the PP satisfy
(31), is called a resolution of the identity. H in form (30) gives the spectral resolution
of H.

We can now restate Theorem 4 as

Theorem 5. Let X be a complex Euclidean space, H: X -> X a self-adjoint
linear map. Then there is a resolution of the identity, in the sense of (29), (31), and
(32) that gives a spectral resolution (30) of H.

The restated form of the spectral theorem is very useful for defining functions of
self-adjoint operators. We remark that its greatest importance is as the model for the
infinite-dimensional version.

Squaring relation (30) and using properties (31) of the Pf we get
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By induction, for any natural number in,

H,,, = a Pi

It follows that for any polynomial p,

p(H) = E p(aj)Pi. (33)

Let f (a) be any real valued function defined on the spectrum of H. We define J(H) by
formula (33):

f(H) = Ef(ai)Pj.
(33)'

An example:

eH` = 1: eo' Pj.

We shall say more about this in Chapter 9.
We present a series of no-cost extensions of Theorem 5.

Theorem 6. Suppose H and K are a pair of self-adjoint matrices that commute:

H°=H, K"=K, HK=KH.

Then they have a common spectral resolution, that is, there exist orthogonal
projections satisfying (29), (31), and (32) so that (30) holds, as well as

E b,Pj = K.

Proof. Denote by N one of the eigenspaces of H; then for every x in N

Hx=ax,

Applying K, we get

KHx = aKx.

Since H and K commute, we can rewrite this as

HKx = aKx,

(30)'

which shows that Kx is an eigenvector of H. So K maps N into itself. The restriction
of K to N is self-adjoint. We now apply spectral resolution of K over N; combining
all these resolutions gives the joint spectral resolution of H and K.
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This result can be generalized to any finite collection of pairwise commuting
self-adjoint mappings.

Definition. A linear mapping A of Euclidean space into itself is called anti-
self-adjoins if

A* = -A.

It follows from the definition of adjoint and the property of conjugate symmetry
of the scalar product that for any linear map M of a complex Euclidean space into
itself,

(iM)* = -iM*. (34)

In particular, if A is anti-self-adjoint, iA is self-adjoint, and Theorem 4 applies. This
yields Theorem 7.

Theorem 7. Let A be an anti-self-adjoint mapping of a complex Euclidean
space into itself. Then

(a) The eigenvalues of A are purely imaginary.
(b) We can choose an orthonormal basis consisting of eigenvectors of A.

We introduce now a class of maps that includes self-adjoint, anti-self-adjoint, and
unitary maps as special cases.

Definition. A mapping N of a complex Euclidean space into itself is called
normal if it commutes with its adjoint:

NN* = N*N.

Theorem 8. A normal map N has an orthonormal basis consisting of
eigenvectors.

Proof. If N and N* commute, so do

2
2N*

and A=N
N*

H =
N

(35)

Clearly, H is adjoint and A is anti-self-adjoint. According to Theorem 6 applied to H
and K = iA, they have a common spectral resolution, so that there is an orthonormal
basis consisting of common eigenvectors of both H and A. But since by (35),

N = H + A, (35)'

it follows that these are also eigenvectors of N as well as of N*. O
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Here is an application of Theorem 8.

Theorem 9. Let U be a unitary map of a complex Euclidean space into itself,
that is, an isometric linear map.

(a) There is an orthonormal basis consisting of genuine eigenvectors of U.
(b) The eigenvalues of U are complex numbers of absolute value = 1.

Proof. According to equation (42) of Chapter 7, an isometric map U satisfies
U' U = 1. This relation says that U` is a left inverse for U. We have shown in Chapter
3 (see Corollary B of Theorem i there) that a mapping that has a left inverse is
invertible, and its left inverse is also its right inverse: UU* = 1. These relations show
that U commutes with U'; thus U is normal and Theorem 8 applies, proving part (a).
To prove part (b), let f be an eigenvector of U, with eigenvalue u : Uf = uf. It
follows that II Uf II = II of II = Jul II f II. Since U is isometric, Jul = 1. 0

Our first proof of the spectral resolution of self-adjoint mappings is based on the
spectral resolution of general linear mappings. This necessitates the application of
the fundamental theorem of algebra on the existence of complex roots, which then
are shown to be real. The question is inescapable: Is it possible to prove the
spectral resolution of self-adjoint mappings without resorting to the fundamental
theorem of algebra? The answer is "Yes." The new proof, given below, is in every
respect superior to the first proof. Not only does it avoid the fundamental theorem
of algebra, but in the case of real symmetric mappings it avoids the use of complex
numbers. It gives a variational characterization of eigenvalues that is very useful in
estimating the location of eigenvalues; this will be exploited systematically in
Chapter 10. Most important, the new proof can be carried over to infinite-
dimensional spaces.

Second Proof of Theorem 4. We start by assuming that X has an orthonormal
basis of eigenvectors of H. We use the representations (26) and (26)' to write

(x, Hx) _ E a;z?
(x, x) = zz (36)

We arrange the a; in increasing order:

a, <a,) <... <a,,. (36)'

It is clear from (36)' that choosing z, 54 0 and all the other zi, i = 2, ... , n = 0,
makes (36) as small as possible. So

a, = min (x, Hx)
. o (x x)

(37)
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Similarly,

an = min
(x, Hx)

x#o (x,x)
(37)'

The minimum and maximum, respectively, are taken on at points x =f that are
eigenvectors of H with eigenvalues a, and a,,, respectively.

We shall show now, without using the representation (36), that the minimum
problem (37) has a solution and that this solution is an eigenvector of H. From this
we shall deduce, by induction, that H has a full set of eigenvectors.

The quotient (36) is called the Rayleigh quotient of H and is abbreviated by
R = RH. The numerator is abbreviated, see (6), as q; we shall denote the
denominator by p,

R(x) = q(x) - (x, Hx)

P(X) (x, x)

Since H is self-adjoint, by (21)' R is real-valued; furthermore, R is a homogeneous
function of x of degree zero, that is, for every scalar k,

R(kx) = R(x).

Therefore in seeking its maximum or minimum, it suffices to confine the search to
the unit sphere II x II = 1. In Chapter 7, Theorem 15, we have shown that in a finite-
dimensional Euclidean space X, every sequence of vectors on the unit sphere has a
convergent subsequence. It follows that R(x) takes on its minimum at some point of
the unit sphere; call this point f. Let g be any other vector and t be a real variable;
R(f + tg) is the quotient of two quadratic functions of t.

Using the self-adjointness of H and the conjugate symmetry of the scalar product
we can express R(f + tg) as

R(f + tg) - (f' Hf) + 2tRe(g, Hf) + t2(g, Hg) - q(t)

(f, f) + 2tRe(g,.f) + t2(g,g) p(t)
(38)

Since R achieves its minimum at f, R(f + tg) achieves its minimum at t = 0; by
calculus its derivative there is zero:

d
dt R(f + tg) =R=qp-qp=0.

1=0 P

Since II f II = 1,p = 1; denoting R(f) = min R by a, we can rewrite the above as

R=4-aP=0. (38)'
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Using (38), we get readily

9(f + tg)1,=o = 2Re(g, H.f),

P(f + tg)I,_() = 2Re(g, f)

Setting this into (38)' yields

2Re(g, Hf - af) = 0.

Replacing g by ig we deduce that for all g in X,

2(g, Hf - af) = 0. (39)

A vector orthogonal to all vectors g is zero; since (39) holds for all g, it follows that

Hf - of = 0, (39)'

that is, f is an eigenvector and a is an eigenvalue of H.
We prove now by induction on the dimension n of X that H has a complete set of n

orthogonal eigenvectors in X. We consider the orthogonal complement X1, off, that
is, all x such that

(x, f) = 0. (39)"

Clearly, dim X, = dim X - 1. We claim that H maps the space X, into itself; that is,
if x E X1, then (Hx, f) = 0. By self-adjointness and (39)",

(Hx, .f) = (x, Hf) = (x, af) = a(x, f) = 0.

H restricted to X, is self-adjoint: since dim X, = n - 1, induction on the
dimension of the underlying space shows that H has a full set of eigenvectors on X.
These together with f give a full set of n orthogonal eigenvectors of H on X.
Instead of arguing by induction we can argue by recursion; we can pose the same
minimum problem in X, that we have previously posed in the whole space, to
minimize

(x, Hx)

(x,x)

among all nonzero vectors in X1. Again this minimum value is taken on by some
vector x =f2 in X,, and f2 is an eigenvector of H. The corresponding eigenvalue
is a2:

Hf2 = a,&.
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where a2 is the second smallest eigenvalue of H. In this fashion we produce
successively a full set of eigenvectors. Notice that the jth eigenvector goes with the
jth eigenvalue arranged in increasing order.

In the argument sketched above, the successive eigenvalues, arranged in
increasing order, are calculated through a sequence of restricted minimum
problems. We give now a characterization of the jth eigenvalue that makes no
reference to the eigenvectors belonging to the previous eigenvalues. This
characterization is due to E. Fischer.

Theorem 10. Let H be a real symmetric linear map of a real Euclidean space X
of finite dimension. Denote the eigenvalues of H, arranged in increasing order, by
a1,...,a,,. Then

(x, Hx)aj = min max
dim S =j xinS.x#0 (X,x)

S linear subspaces of X.

Note. (40) is called the minmax principle.

Proof. We shall show that for any linear subspace S of X of dim S = j.

(x Hx),

(40)

max > a (41)j.
xinS (x,x)

To prove this it suffices to display a single vector x # 0 in S for which

(x, Hx)
> aj.

(x, x)

Such an x is one that satisfies the j - 1 linear conditions

(42)

i=1,...,j-1, (43)

where f, is the ith eigenvector of H. It follows from Corollary A of Theorem I in
Chapter 3 that every subspace S of dimension j has a nonzero vector x satisfying
j - I linear conditions (43). The expansion (25) of such an x in terms of the
eigenvectors of H contains no contribution from the first j - I eigenvectors; that is,
in (36), zi = 0 for i < j. It follows then from (36) that for such x, (42) holds. This
completes the proof of (41).

To complete the proof of Theorem 10 we have to exhibit a single subspace S of
dimension j such that

a (x,Hx) (44)- (x,x)
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holds for all x in S. Such .a subspace is the space spanned by f1, ... , f. Every x in this
space is of form zt,; since a; < ai for i <j, inequality (44) follows
from (36).

The calculations and arguments presented above show an important property of
the Rayleigh quotient:

(i) Every eigenvector h of H is a critical point of RH; that is, the first derivatives
of RH (x) are zero when x is an eigenvector of H. Conversely, the
eigenvectors are the only critical points of RH(x).

(ii) The value of the Rayleigh quotient at an eigenvectorf is the corresponding
eigenvalue of H:

RH(f) = a when Hf = af.

This observation has the following important consequence:
Suppose g is an approximation of an eigenvectorf within a deviation of e:

IIg-fll_<<E.

Then RH(g) is an approximation of the eigenvalue a within o(e2):

IRH(g) - al < 0(e2).

(45)

(45)'

This result is a direct consequence of the Taylor approximation of the function
RH(x) near the point x = f.

The estimate (45)' is very useful for devising numerical methods to calculate the
eigenvalues of matrices.

We now give a useful extension of the variational characterization of the
eigenvalues of a self-adjoint mapping. In a Euclidean space X, real or complex, we
consider two self-adjoint mappings, H and M; we assume that the second one, M, is
positive.

Definition. A self-adjoint mapping M of a Euclidean space X into itself is called
positive if for all nonzero x in X

(x,Mx)>0.

It follows from the definition and properties of scalar product that the identity I is
positive. There are many others; these will be studied systematically in Chapter 10.

We now form a generalization of the Rayleigh quotient:

RH.M(x) - (x'
Hxj

(46)x,Mx
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Note that when M = I, we are back at the old Rayleigh quotient. We now pose for
the generalized Rayleigh quotient the same minimum problem that we posed before
for the original Rayleigh quotient: Minimize RH.M(x), that is, find a nonzero vectorx
that solves

(x, Hx)
min

(x, Mx)
(47)

EXERCISE 5. (a) Show that the minimum problem (47) has a nonzero solution f.
(b) Show that a solution f of the minimum problem (47) satisfies the equation

Hf = bMf , (48)

where the scalar b is the value of the minimum (47).
(c) Show that the constrained minimum problem

min ()', H)') (47)'
(Y, My)

has a nonzero solution g.
(d) Show that a solution g of the minimum problem (47)' satisfies the equation

Hg = cMg, (48)'

where the scalar c is the value of the minimum (47)'.

Theorem 11. Let X be a finite-dimensional Euclidean space, let H and M be
two self-adjoint mappings of X into itself, and let M be positive. Then there exists a
basis fl, . . . J, of X where each f satisfies an equation of the form

Hf, = b1 real (49)

and

Mf) = 0 for i # j.

EXERCISE 6. Prove Theorem 11.

EXERCISE 7. Characterize the numbers b; in Theorem 11 by a minimax principle
similar to (40).

The following useful result is an immediate consequence of Theorem 11.

Theorem 11'. Let H and M be self-adjoint, M positive. Then all the eigenvalues
of M-1H are real. If H is positive, all eigenvalues of M-1H are positive.
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EXERCISE 8. Prove Theorem 11.

EXERCISE 9. Give an example to show that Theorem 11' is false if M is not
positive.

We recall from formula (32)' of Chapter 7 the definition of the norm of a linear
mapping A of a Euclidean space X into itself.

IIAII=max1IAx1I,IIxII=I.

When the mapping is normal, that is, commutes with its adjoint, we can express its
norm as follows.

Theorem 12. Suppose N is a normal mapping of a Euclidean space X into itself.
Then

II N 11 = max InnI, (50)

where the ny are the eigenvalues of N.

EXERCISE to. Prove Theorem 12. (Hint: Use Theorem 8.)

EXERCISE I I. We define the cyclic shift mapping S, acting on vectors in C", by
S(ai,a2,...,a") = (a,,,ai,...,a,,-i).

(a) Prove that S is an isometry in the Euclidean norm.
(b) Determine the eigenvalues and eigenvectors of S.
(c) Verify that the eigenvectors are orthogonal.

Remark. The expansion of a vector v in terms of the eigenvectors of S is called
the finite Fourier transform of v. See Appendix 9.

Theorem 13. Let A be a linear mapping of a finite-dimensional Euclidean
space X into another finite-dimensional Euclidean space U. The norm II A II of A
equals the square root of the largest eigenvalue of A*A.

Proof. II Ax II2 = (Ax, Ax) = (x, A"Ax). According to the Schwarz inequality,
the right-hand side is < II x 11 11 A* Ax II. It follows that for unit vectors x, II x 11 = 1,

II Ax II2<IIA*AxII-

A'A is a self-adjoint mapping; according to formula (37)', we have

(51)

max II A*Ax II = a,,,ac,
IIXII=I
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where amaX is the largest eigenvalue of A*A. Combining this with (50), we conclude
that II A IIz < amaX. To show that equality holds, we note that for the eigenvectorf of
A"A, A`Af = ama,,f and so in the Schwarz inequality which gave (51), the sign of
equality holds. O

EXERCISE 12. (i) What is the norm of the matrix

A=I 1 2I
0 3

in the standard Euclidean structure?
(ii) Compare the value of II A II with the upper and lower bounds of II A II asked

for in Exercise 19 of Chapter 7.

EXERCISE 13. What is the norm of the matrix

1 0 1

2 3 0 )

in the standard Euclidean structures of 08 and I .2



CHAPTER 9

Calculus of Vector- and
Matrix-Valued Functions

In Section 1 of this chapter we develop the calculus of vector- and matrix-valued
functions. There are two ways of going about it: by representing vectors and
matrices in terms of their components and entries with respect to some basis and
using the calculus of number-valued functions or by redoing the theory in the context
of linear spaces. Here we opt for the second approach, because of its simplicity and
because it is the conceptual way to think about the subject; but we reserve the right to
go to components when necessary.

In what follows, the field of scalars is the real or complex numbers. In Chapter 7
we defined the length of vectors and the norm of matrices; see (1) and (32). This
made it possible to define convergence of sequences as follows.

(i) A sequence xk of vectors in R'1 converges to the vector x if

lim l lxk - x1l = 0.k x

(ii) A sequence Ak of n x n matrices converges to A if

lim IlAk - All = 0.kx
We could have defined convergence of sequences of vectors and matrices,

without introducing the notion of size, by requiring that each component of xk tend
to the corresponding component of x and, in the case of matrices, that each entry of
Ak tend to the corresponding entry of A. But using the notion of size introduces a
simplification in notation and thinking, and is an aid in proof. There is more about
size in Chapter 14 and 15.

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright 2007 John Wiley & Sons, Inc.
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1. THE CALCULUS OF VECTOR- AND MATRIX-VALUED
FUNCTIONS

Let x(t) be a vector-valued function of the real variable t, defined, say, for t in (0, 1).
We say that x(t) is continuous at to if

lim IIx(t) - x(to)II = 0.
i-r0

We say that x is differentiable at to, with derivative i(to), if

lim
h-0

x(to + h) - x(to) _ X(to)
h

Here we have abbreviated the derivative by a dot:

x(t) = dtx(t).

=0.

(1)

The notion of continuity and differentiability of matrix-valued functions is defined
similarly.

The fundamental lemma of differentiation holds for vector- and matrix-valued
functions.

Theorem 1. If k(t) = 0 for all t in (0, 1), then x(t) is constant.

EXERCISE I. Prove the fundamental lemma for vector valued functions. (Hint:
Show that for every vector y, (x(t), y) is constant.)

We turn to the rules of differentiation. Linearity. (i) The sum of two
differentiable functions is differentiable, and

d d d
dt (x + y) = d-x + dt y.

(ii) The constant multiple of a differentiable function is differentiable, and

dt (kx(t)) = kdtx(t).

Similarly for matrix-valued differentiable functions,

(iii) dt (A(t) + B(t)) = dt A(t) + dt
B(t)
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(iv) If A is independent of t, then we have

dAB(t) = AdB(t).

The proof is the same as in scalar calculus.
For vector- and matrix-valued functions there is a further manifestation of the

linearity of the derivative: Suppose that I is a fixed linear function defined on Il" and
that x(t) is a differentiable vector-valued function. Then I(x(t)) is a differentiable
function, and

dt I(x(t)) = I(d x(t)) (2)

The same result applies to linear functions of matrices. In particular the trace,
defined by (35) in Chapter 5, is such a linear function. So we have, for every
differentiable matrix function A(t), that

dttr(A(t)) = trI d.A(t) I. (2)

The rule (sometimes called the Leibniz rule) for differentiating a product is the
same as in elementary calculus. Here, however, we have at least five kinds of
products and therefore five versions of rules.

Product Rules

(i) The product of a scalar function and a vector function:

dt[k(t)x(t)] = (dt Ix(t)+k(t)dtx(t).

(ii) The product of a matrix function times a vector function:

-[A(t)x(t)]
= (A(1))x(t) + A(t) d x(t).

(iii) The product of two matrix-valued functions:

dt [A(t)B(t)] = [d.A(t)] B(t) + A(t) dtB(t)J .

(iv) The product of a scalar-valued and a matrix-valued function:

dt [k(t)A(t)] = [dr] A(t) + k(t) d. A(t).
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(v) The scalar product of two vector functions:

d
d(y(t),x(t)) = (dty(t),X(t)) +

(Y(t),dtdx(t)).

The proof of all these is the same as in the case of ordinary numerical functions.
The rule for differentiating the inverse of a matrix function resembles the calculus

rule for differentiating the reciprocal of a function, with one subtle twist.

Theorem 2. Let A(t) be a matrix-valued function, differentiable and invertible.
Then A-' (t) also is differentiable, and

d A-I -A-I (A)A-'. (3)

Proof. The following identity is easily verified:

A- I (t + h) - A-' (t) = A- I (t + h) (A(t) - A(t + h)]A- I (t) .

Dividing both sides by h and letting h 0 yields (3).

EXERCISE 2. Derive formula (3) using product rule (iii).

The chain rule of calculus says that if f and a are scalar-valued differentiable
functions, so is their composite, f (a(t)), and

dtf (a(t)) =f (a) dt (4)

where f' is the derivative off. We show that the chain rule fails for matrix-valued
functions. Take f(a) = a2; by the product rule,

dtA' AdtA+ (A)A,

certainly not the same as (4). More generally, we claim that for any positive integer
power k,

dt Ak = AAk-I + AAAk-2 + ... + Ak- I A.

This is easily proved by induction: We write

(5)

Ak = AAk- I
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and apply the product rule

di
Ak = AAk- I + A dt Ak- I

Theorem 3. Let p be any polynomial, let A(t) be a square matrix-valued
function that is differentiable; denote the derivative of A with respect to t as A.

(a) If for a particular value of t the matrices A(t) and A(t) commute, then the
chain rule in form (4) holds as t:

dp(A) = p'(A)A. (6)

(b) Even if A(t) and A(t) do not commute, a trace of the chain rule remains:

dttrp(A) = tr(p'(A)A).

Proof. Suppose A and A commute; then (5) can be rewritten as

dtA't = kAk-IA.

(6)'

This is formula (6) for p(s) = sk; since all polynomials are linear combinations of
powers, using the linearity of differentiation we deduce (6) for all polynomials.

For noncommuting A and A we take the trace of (5). According to Theorem 6 of
Chapter 5, trace is commutative:

tr(AJAAk J'-I) = tr(Ak J-IAAA) = tr(Ak-IA).

So we deduce that

trdtAk = ktr(Ak-IA).

Since trace and differentiation commute [see (2)'], we deduce formula (6)' for
p(s) = sk. The extension to arbitrary polynomials goes as before. 11

We extend now the product rule to multilinear functions M(al,... , ak). Suppose
xl,...,xk are differentiable vector functions. Then M(xl,...,xk) is differentiable,
and

M(XI,x2i.... xk) +... +M(xl,...,xk-I,xk) (7)
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The proof is straightforward: since M is multilinear,

M(xj(t + h),...,xk(t + h)) - M(x1(t),...,xk(t))

= M(xj(t + h) - xI(t),x2(t + h),...,xk(t + h))

+M(xi(t),x2(t+h) -x2(t), x3(t+h),...,xk(t+h))
+ ... + M(xl(t),...,xk_I(t), xk(t + h) - xk(t)).

Dividing by h and letting h tend to zero gives (7).
The most important application of (7) is to the function D, the determinant,

defined in Chapter 5:

Wt

We now show how to recast this formula to involve a matrix X itself, not its
columns. We start with the case when X(O) = I, that is, xj(0) = e3. In this case the
determinants on the right in (8) are easily evaluated at t = 0:

D(xl(0),e2,...,e,,) = x11(0)

D(e1, k2(0), e3, ... , en) = x22(0)

D(el, ... , e,,_1,k.(0)) =

Setting this into (8) we deduce that if X(t) is a differentiable matrix-valued function
and X(0) = I, then

d
det X(t) I,=o = trk(0). (8)'

Suppose Y(t) is a differentiable square matrix-valued function, which is
invertible. We define X(t) as Y(0)-IY(t), and write

Y(t) = Y(0)X(t); (9)

clearly, X(0) = I, so formula (8)' is applicable. Taking the determinant of (9), we get
by the product rule for determinants that

det Y(t) = det Y(0) det X(t). (9)'

Setting (9) and (9)' into (8)', we get

[detY(0)]-I d detY(t)l,=o = tr[Y-I(0)Y(0)].
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We can rewrite this as

dt
log det Y(t) I,=o = tr[Y- I (t)Y(t)],=0.

Since now there is nothing special about t = 0, this relation holds for all t:
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Theorem 4. Let Y(t) be a differentiable square matrix-valued function. Then
for those values of t for which Y(t) is invertible,

d log det Y = tr 1 Y- ' dt Y l . (10)

The importance of this result lies in the connection it establishes between
determinant and trace.

So far we have defined f(A) for matrix arguments when f is a polynomial. We
show now an example of a nonpolynomial f for which f(A) can be defined. We take
f (s) = es, defined by the Taylor series

esk.
0

We claim that the Taylor series also serves to define eA for any square matrix A:

Ak
eA

o

The proof of convergence is the same as in the scalar case; it boils down to showing
that the difference of the partial sums tends to zero. That is, denote by e,,, (A) the mth
partial sum:

M Ak
e(A)=1:

0 k!

then

(12)

Ak
(13)e,. (A) - e,(A) _

k!
I+I

Using the multiplicative and additive inequalities for the norm of matrices developed
in Chapter 7, Theorem 14, we deduce that

lie (A) - er(A)II II kilk
. (13)'

i+1
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We are now back in the scalar case, and therefore can estimate the right-hand side
and assert that as I and m tend to infinity, the right-hand side of (13) tends to zero,
uniformly for all matrices whose norm I I A I I is less than any preassigned constant.

The matrix exponential function has some but not all properties of the scalar
exponential function.

Theorem 5. (a) If A and B are commuting square matrices,

eA+B =eAeB.

(b) If A and B do not commute, then in general

A+B # eAeBe
.

(c) If A(t) depends differentiably on t, so does eA( ).
(d) If for a particular value of t, A(t) and A(t) commute, then (d/dt)eA = eAA.
(e) If A is anti-self-adjoint, A* = -A, then eA is unitary.

Proof. Part (a) follows from the definition (11)' of eA+B, after (A + B)k is
expressed as F_ (')AiB'-j, valid for commuting variables.

That commutativity is used essentially in the proof of part (a) makes part (b)
plausible. We shall not make the statement more precise; we content ourselves with
giving a single example:

A =
(0

0), B= (1 0).

It is easy to see that A2 = 0, B2 = 0, so by definition (11)',

e
A = I + A = II eB=I+B= I I 0

0

A brief calculation shows that

1 1

eAeB= (1 1), eBeA= (1 l);

since these products are different, at least one must differ from eA+B; actually,
both do.

EXERCISE 3. Calculate

eA+B = exp
0 1

1 0
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To prove (c) we rely on the following matrix analogue of an important property of
differentiation: Let {E(t)} be a sequence of differentiable matrix-valued functions
defined on an interval, with these properties:

(i) Em(t) converges uniformly to a limit function E(t).
(ii) The derivatives Em(t) converge uniformly to a limit function F(t).

Conclusion: E is differentiable, and t = F.

EXERCISE 4. Prove the proposition stated in the Conclusion.

We apply the same principle to E,,,(t) = em(A(t)). We have already shown that
E3(t) tends uniformly to eA(') ; a similar argument shows that E,,,(t) converges.

EXERCISE 5. Carry out the details of the argument that Em(t) converges.

Part (d) of Theorem 5 follows from the explicit formula for (d/dt)eA(1), obtained
by differentiating the series (11)' termwise.

To prove part (e) we start with the definition (11)' of eA. Since forming the adjoint
is a linear and continuous operation, we can take the adjoint of the infinite series in
(11)' term by term:

x
k

O
()*

(e A)* = r A
(A*r

=
eA.

=
e-A.= k!

It follows, using part (a), that

(eA)*eA
= e-AeA = e° = I.

According to formula (45) of Chapter 7, this shows that eA is unitary. O

EXERCISE 6. Apply formula (10) to Y(t) = eA' and show that

det eA = eA.

EXERCISE 7. Prove that all eigenvalues of eA are of the form e", a an eigenvalue
of A. Hint: Use Theorem 4 of Chapter 6, along with Theorem 6 below.

We remind the reader that for self-adjoins matrices H we have already in
Chapter 8 defined f(H) for a broad class of functions; see formula (33)'.

2. SIMPLE EIGENVALUES OF A MATRIX

In this section we shall study the manner in which the eigenvalues of a matrix
depend on the matrix. We take the field of scalars to be C.
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Theorem 6. The eigenvalues depend continuously on the matrix in the
following sense: If {A} is a convergent sequence of square matrices, in the sense
that all entries of Aconverge to the corresponding entry of A, then the set of
eigenvalues of Aconverges to the set of eigenvalues of A. That is, for every c > 0
there is a k such that all eigenvalues of A. are, form > k, contained in discs of radius
c centered at the eigenvalues of A.

Proof. The eigenvalues of A,,, are the roots of the characteristic polynomial
p(s) = det(sI - A,,,). Since A. tends to A, all entries of A,,, tend to the
corresponding entries of A; from this it follows that the coefficients of p,,, tend to
the coefficients of p. Since the roots of polynomials depend continuously on the
coefficients, Theorem 6 follows.

Next we investigate the differentiability of the dependence of the eigenvalues on
the matrix. There are several ways of formulating such a result, for example, in the
following theorem.

Theorem 7. Let A(t) be a differentiable square matrix-valued function of the
real variable t. Suppose that A(0) has an eigenvalue ao of multiplicity one, in the
sense that ale is a simple root of the characteristic polynomial of A(O). Then for t
small enough, A(t) has an eigenvalue a(t) that depends differentiably on t, and which
equals ao at zero, that is, a(0) = ao.

Proof. The characteristic polynomial of A(t) is

det(sl - A(t)) = p(s, t),

a polynomial of degree n in s whose coefficients are differentiable functions of t. The
assumption that ap is a simple root of A(0) means that

p(ao, 0) = 0,
8sa

p(s, 0)1.0 0.

According to the implicit function theorem, under these conditions the equation
p(s, t) = 0 has a solution s = a(t) in a neighborhood of t = 0 that depends
differentiably on t.

Next we show that under the same conditions as in Theorem 7, the eigenvector
pertaining to the eigenvalue a(t) can be chosen to depend differentiably on t. We say
"can be chosen" because an eigenvector is determined only up to a scalar factor; by
inserting a scalar factor k(t) that is a nondifferentiable function of t we could, with
malice aforethought, spoil differentiability (and even continuity).

Theorem 8. Let A(t) be a differentiable matrix-valued function of t, a(t) an
eigenvalue of A(t) of multiplicity one. Then we can choose an eigenvector h(t) of
A(t) pertaining to the eigenvalue a(t) to depend differentiably on t.
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Proof. We need the following lemma.

Lemma 9. Let A be an n x n matrix, p its characteristic polynomial, a some
simple root of p. Then at least one of the (n - 1) x (n - 1) principal minors of
A - al has nonzero determinant, where the ith principal minor is the matrix
remaining when the ith row and ith column of A are removed.

Proof. We may, at the cost of subtracting aI from A, take the eigenvalue to be
zero. The condition that 0 is a simple root of p(s) means that p(O) = 0;
(dp/ds) (0) # 0. To compute the derivative of p we denote by c1, ... , c,, the
columns of A, and by el,... , e the unit vectors. Then

.sI - A= (se, -cl,se2-C2,...,.se -c")

Now we use formula (8) for the derivative of a determinant:

dp (0) =
dsdet(sI - A)Is=o

= det(el, -c2, ... , det(-cl, -c2, ... , c, 1,

Using Lemma 2 of Chapter 5 for the determinants on the right-hand side we see that
(dplds) (0) is (-1)" times the sum of the determinants of the (n - 1) x (n - 1)
principal minors. Since (dp/ds)(0) 0 0, at least one of the determinants of these
principal minors is nonzero.

Let A be a matrix as in Lemma 9 and take the eigenvalue a to be zero. Then one of
the principal (n - 1) x (n - 1) minors of A, say the ith, has nonzero determinant.
We claim that the ith component of an eigenvector h of A pertaining to the
eigenvalue a is nonzero. Suppose it were denote by hM'M the vector obtained from h by
omitting the ith component, and by Aji the ith principal minor of A. Then h(')
satisfies

A;;h(') = 0. (14)

Since A,1 has determinant not equal to 0, Ail is, according to Theorem 5 of Chapter 5,
invertible. But then according to (14), M') = 0. If the ith component were zero, that
would make h = 0, a contradiction, since an eigenvector is not equal to 0. Having
shown that the ith component of h is not equal to 0, we set it equal to I as a way of
normalizing h. For the remaining components we have now an inhomogeneous
system of equations:

A«h(') = d), (14)'

where c(') is -1 times the ith column of A, with the ith component removed. So

h(') = A-' c('). (15)
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The matrix A(O) and the eigenvalue a(O) of Theorem 8 satisfy the hypothesis of
Lemma 9. Then a matrix A;i(0) is invertible; since A(t) depends continuously on t, it
follows from Theorem 6 that Ai;(t) - a(t)I is invertible for t small; for such small
values oft we set the ith component of h(t) equal to 1, and determine the rest of h by
formula (15):

h' (t) = A- I (t) c' (t). (16)

Since all terms on the right depend differentiably on t, so does h'(t). This concludes
the proof of Theorem 8.

We now extend Lemma 9 to the case when the characteristic polynomial has
multiple roots and prove the following results.

Lemma 10. Let A be an n x n matrix, p its characteristic polynomial. Let a be
some root of p of multiplicity k. Then the nullspace of (A - al) is at most k-
dimensional.

Proof. We may, without loss of generality, take a = 0. That 0 is a root of
multiplicity k means that

kd -I k

p(o) p(0) = 0, a.7,
p(0) 0 0.

Proceeding as in the proof of Lemma 9, that is, differentiating k times det(sI - A),
we can express the kth derivative of p at 0 as a sum of determinants of principal
minors of order (n - k) x (n - k). Since the kth derivative is not equal to 0, it
follows that at least one of these determinants is nonzero, say the minor obtained by
removing from A the ith rows and columns, i = 1, ... , k. Denote this minor as A.
We claim that the nullspace N of A contains no vector other than zero whose first k
components are all zero. For, suppose h is such a vector; denote by hlk) the vector
obtained from h by removing the first k components. Since Ah = 0, this shortened
vector satisfies the equation

A(k)h(k) = 0. (17)

Since det A(k) # 0, AM is invertible; therefore it follows from (17) that hlk) = 0.
Since the components that were removed are zero, it follows that h = 0, a
contradiction.

It follows now that dim N < k; for, if the dimension of N were greater than k, it
would follow from Corollary A of Theorem I in Chapter 3 that the k linear
conditions h1 = 0, . . . , hk = 0 are satisfied by some nonzero vector h in N. Having
just shown that no nonzero vector h in N satisfies these conditions, we conclude that
dim N < k.

Lemma 10 can be used to prove Theorem 11, announced in Chapter 6.
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Theorem 11. Let A be an n x n matrix, p its characteristic polynomial, a some
root of p of multiplicity k. The dimension of the space of generalized eigenvectors of
A pertaining to the eigenvalue a is k.

Proof We saw in Chapter 6 that the space of generalized eigenvectors is the
nullspace of (A - aI)d, where d is the index of the eigenvalue a. We take a = 0. The
characteristic polynomial pit of Ad can be expressed in terms of the characteristic
polynomial p of A as follows:

d-1
sI - Ad = 7l (s11dI - u>>A),

0

where co is a primitive dth root of unity. Taking determinants and using the
multiplicative property of determinants we get

pd(s) = det(sI - Ad) =11 det(s11dI - w1A)
a

d-1 d-1

= t 11 det(o fsI1dl - A) = f [J p(w-JS1 /d).

0 0

Since a = 0 is a root of p of multiplicity k, it follows that

p(s) - const. sk'

as s tends to zero. It follows from (18) that as s tends to zero,

Pd(s) ' const. st;

(18)

therefore Pd also has a root of multiplicity k at 0. It follows then from Lemma 10 that
the nullspace of Ad is at most k dimensional.

To show that equality holds, we argue as follows. Denote the roots of p as
a1i ... , aj and their multiplicities as k1,... , kJ. Since p is a polynomial of degree n,
according to the fundamental theorem of algebra,

Ek; = n. (19)

Denote by Ni the space of generalized eigenvectors of A pertaining to the eigenvalue
a,. According to Theorem 7, the spectral theorem, of Chapter 6, every vector can be
decomposed as a sum of generalized eigenvectors: C" = NI ® . . . E) Nj. It follows
that

n = E dim Ni. (20)
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Ni is the nullspace of (A - a;I)"; we have already shown that

dim N; < k;. (21)

Setting this into (20), we obtain

n<1: k;.

Comparing this with (19), we conclude that in all inequalities (21) the sign of
equality holds. O

We show next how to actually calculate the derivative of the eigenvalue a(t) and
the eigenvector h(t) of a matrix function A(t) when a(t) is a simple root of the
characteristic polynomial of A(t). We start with the eigenvector equation

Ah = ah. (22)

We have seen in Chapter 5 that the transpose AT of a matrix A has the same
determinant as A. It follows that A and AT have the same characteristic polynomial.
Therefore if a is an eigenvalue of A, it is also an eigenvalue of AT:

AT! = al. (22)'

Since a is a simple root of the characteristic polynomial of AT, by Theorem 11 the
space of eigenvectors satisfying (22)' is one dimensional, and there are no
generalized eigenvectors.

Now differentiate (22) with respect to t:

Ah+Ah=ah+ah. (23)

Let I act on (23):

(1, Ah) + (1, Ah) = a(1, h) + a(!, h). (23)'

We use now the definition of the transpose, equation (9) of Chapter 3, to rewrite the
second term on the left as (ATI, h). Using equation (22)', we can rewrite this as
a(!, h), the same as the second term on the right; after cancellation we are left with

(1, Ah) = a(l, h). (24)

We claim that (l, h) 54 0, so that (24) can be used to determine a. Suppose on the
contrary that (1, h) = 0; we claim that then the equation

(AT - aI)m = 1 (25)
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would have a solution m. To see this we appeal to Theorem 2' of Chapter 3,
according to which the range of T = AT - al consists of those vectors which are
annihilated by the vectors in the nullspace of TT = A - al. These are the
eigenvectors of A and are multiples of h. Therefore if (1, h) = 0, 1 would satisfy
the criterion of belonging to the range of AT - al, and equation (25) would have a
solution m. This m would be a generalized eigenvector of AT, contrary to the fact
that there aren't any.

Having determined a from equation (24), we determine h from equation (23),
which we rearrange as

(A - aI)h = (a - A)h. (26)

Appealing once more to Theorem 2' of Chapter 3 we note that (26) has a solution h if
the right-hand side is annihilated by the nullspace of AT - al. That nullspace
consists of multiples of 1, and equation (24) is precisely the requirement that it
annihilate the right-hand side of (26). Note that equation (26) does not determine h
uniquely, only up to a multiple of h. That is as it should be, since the eigenvectors
h(t) are determined only up to a scalar factor that can be taken as an arbitrary
differentiable function of t.

3. MULTIPLE EIGENVALUES

We are now ready to treat multiple eigenvalues. The occurence of generalized
eigenvectors is hard to avoid for general matrices and even harder to analyze. For
this reason we shall discuss only self-adjoint matrices, because they have no
generalized eigenvectors. Even in the self-adjoint case we need additional
assumptions to be able to conclude that the eigenvectors of A depend continuously
on a parameter t when A(t) is a differentiable function of t. Here is a simple 2 x 2
example:

b c
A

c d '

b, c, d functions of t, so that c(0) = 0, b(0) = d(0) = 1. That makes A(0) = I,
which has 1 as double eigenvalue.

The eigenvalues a of A are the roots of its characteristics polynomial.

b+d+ (b-d)'-+4c2
a 2

Denote the eigenvector h as (y). The first component of the eigenvalue equation
Ah = ah is bx + cy = ax, from which

y a - b

x c
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Using the abbreviation (d - b)/c = k, we can express

y a - b k + k2+4
x c 2

We choose k(t) = sin(r'),c(t) = exp(-ltl-'), and set b = l,d = I +ck. Clearly
the entries of A(t) are C°` functions, yet ylx is discontinuous as t - 0.

Theorem 12 describes an additional condition under which the eigenvectors vary
continuously, To arrive at these conditions we shall reverse the procedure employed
for matrices with simple eigenvalues: we shall first compute the derivatives of
eigenvalues and eigenvectors and prove afterwards that they are differentiable under
the additional condition.

Let A(t) be a differentiable function of the real variable t, whose values are
selfadjoint matrices. A* = A. Suppose that at t = 0, A(0) has a0 as eigenvalue of
multiplicity k > 1, that is, ao is a k-fold root of the characteristic equation of A(0).
According to Theorem 11, the dimension of the generalized eigenspace of A(0)
pertaining to the eigenvalue ao is k. Since A(0) is self-adjoint, it has no generalized
eigenvectors; so the eigenvectors A(O)h = aoh form a k-dimensional space which
we denote as N.

We take now eigenvectors h(t) and eigenvalues a(t) of A(t), a(0) = a0, presumed
to depend differentiably on t. Then the derivatives of h and a satisfy equation (23);
set t = 0:

Ah + Ah = ah + ah. (27)

We recall now from Chapter 8 the projection operators entering the spectral
resolution; see equations (29), (30), (31), and (32). We denote by P the orthogonal
projection onto the eigenspace N of A with eigenvalue a = ao. Since the
eigenvectors of A are orthogonal, it follows [see equations (29)-(32)] that

PA = aP.

Furthermore, eigenvectors h in N satisfy

Ph = h.

Now apply P to both sides of (27):

PAh + PAh = aPh + aPh.

Using (28) and (28)', we get

(28)

(28)'

PAPh + aPh = ah + aPh.
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The second terms on the right- and left-hand sides are equal, so after cancellation
we get

PAPh = bh. (29)

Since A(t) is self-adjoint, so is A; and since P is self-adjoint, so is PAP. Clearly, PAP
maps N into itself; equation (29) says that a(0) must be one of the eigenvalues of
PAP on N, and h(0) must be an eigenvector.

Theorem 12. Let A(t) be a differentiable function of the real variable t whose
values are self-adjoint matrices. Suppose that at t = 0, A(0) has an eigenvalue ao of
multiplicity k > 1. Denote by N the eigenspace of A(0) with eigenvalue ao, and by P
the orthogonal projection onto N. Assume that the self-adjoint mapping PA(0)P of N
into N has k distinct eigenvalues d;, i = I,_ , k. Denote by w; corresponding
normalized eigenvectors. Then for t small enough, A(t) has k eigenvalues
a,(t), j = 1. ... , k, near ao, with the following properties:

(i) a;(t) depend differentiably on t and tend to ao as t - 0.
(ii) For t 0 0, the a,(1) are distinct.
(iii) The corresponding eigenvector h;(t):

A(t)hj(t) = aj(t)hj(t), (30)

can be so normalized that hi(t) tends to ww as t --+ 0.

Proof. Fort small enough the characteristic polynomial of A(t) differs little from
that of A(O). By hypothesis, the latter has a k-fold root at ao; it follows that the
former have exactly k roots that approach ao as t - 0. These roots are the
eigenvalues a,(t) of A(t). According to Theorem 4 of Chapter 8, the corresponing
eigenvectors hi(t) can be chosen to form an orthonormal set.

Lemma 13. As t -p 0, the distance of each of the normalized eigenvectors h1(t)
from the eigenspace N tends to zero.

Proof. Using the orthogonal projection P onto N, we can reformulate the
conclusion as follows:

Iim1I(I-P)hf(t)II=0, j=1,...,k. (31)

To show this, we use the fact that as t -> 0, A(t) -> A(0) and af(t) ao; since
IIh;(t)II = 1, we deduce from equation (30) that

A(0)hj(t) = aohj(t) + E(t), (32)
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where f(t) denotes a vector function that tends to zero as t 0. Since N consists of
eigenvectors of A(0), and P projects any vector onto N.

A(0)Phj(t) = aoPhh(t). (32)'

We subtract (32)' from (32) and get

A(0)(I - P)hh(t) = ao(I - P)hj(t) + e(t). (33)

Now suppose (31) were false; then there would be a positive number d and a
sequence oft - 0 such that II(I - P)h;(t)II > d. We have shown in Chapter 7 that
there is a subsequence of t for which (I - P)h1(t) tends to a limit h; this limit has
norm >d. It follows from (33) that this limit satisfies

A(0)h = aoh. (33)'

This shows that h belongs to the eigenspace N.
On the other hand, each of the vectors (I - P)hh(t) is orthogonal to N; therefore so is
their limit h. But since N contains h, we have arrived at a contradiction. Therefore
(31) is true. O

We proceed now to prove the continuity of h1(t) and the differentiability of af(t).
Subtract (32)' from (30) and divide by t; after the usual Leibniz-ish rearrangement
we get

A(t) - A(0)1z(t)
+ A(0)

h(t) - Ph(t) a(t) - a(0)
h(t) + a(0)

h(t) - Ph(t)
t t t t

We have dropped the subscript j to avoid clutter. We apply P to both sides; according
to relation (28) PA(0) = aP. Since P2 = P we see that the second terms on the two
sides are zero. So we get

P A(t) t A(0) h(t) = a(t) t a(0) Ph(t). (34)

Since A was assumed to be differentiable,

A(t) - A(0)
= A(O) + e(t);

I

=

and by (31), h(t) = Ph(t) + f(t). Setting these into (34) we get, using p2 = P, that

PA(0)P Ph(t) = a(t)
t

a(0)
Ph(t) + e(t). (35)
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By assumption, the self-adjoint mapping PA(O)P has k distinct eigenvalues d; on N,
with corresponding eigenvectors w,;

PA(0)Pw; = d;w;, i = 1,...,k.

We expand Ph(t) in terms of these eigenvectors:

Ph(t) = j:x;w;,

where x, are functions of t, and set it into (35):

(36)

xi t d; - a(t) t a(0) )WI = 6.(r). (35)'

Since the {wi} form an orthonormal basis for N, we can express the norm of the left-
hand side of (36) in terms of components:

IIPh(t)IIZ = Ixi12.

According to (31), IIPh(t) - h(t)II tends to zero. Since Ilh(t)112 = 1, we deduce that

IIPh(t)II2 = Iz;(t)IZ = 1 - f(t),
(37)

where e(t) denotes a scalar function that tends to zero. We deduce from (35)' that

E dI - a(t) - a(0)
t

2

Ixi(t)I2 = F(t). (37)'

Combining (37) and (37)' we deduce that for each t small enough there is an index j
such that

() d1
a(t) - a(0)

t e(t),

(ii) Ix;(t)I < e(t) fori # j,
(iii) Ixx(t)I = I - e(t).

(38)

Since xi(t) are continuous functions oft for t 54 0, it follows from (38) that the index
j is independent of t for t small enough.

The normalization IIh(t)II = 1 of the eigenvectors still leaves open a factor of
absolute value 1; we choose this factor so that not only Ixil but xj itself is near l:

xj = I - e(t). (38)'
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Now we can combine (31), (36), (38)(,), and (38)' to conclude that

IIh(t) - w 11 < e(t). (39)

We recall now that the eigenvector h(t) itself was one of a set of k orthonormal
eigenvectors. We claim that distinct eigenvectors hh(t) are assigned to distinct
vectors w1; for, clearly two orthogonal unit vectors cannot both differ by less than f
from the same vector w1.

Inequality (39) shows that h1(t), properly normalized, tends to vv1 as t -+ 0.
Inequality (38)(;) shows that al(t) is differentiable at t = 0 and that its derivative is d1.
It follows that fort small but not equal to 0, A(t) has simple eigenvalues near ao. This
concludes the proof of Theorem 12.

4. ANALYTIC MATRIX-VALUED FUNCTIONS

There are further results about differentiability of eigenvectors, the existence of
higher derivatives, but since these are even more tedious than Theorem 12 we shall
not pursue them, except for one observation, due to Rellich. Suppose A(t) is an
analytic function of t:

x
A(t) = E Ait',

0

(40)

where each A; is a self-adjoint matrix. Then also the characteristic polynomial of
A(t) is analytic in t. The characteristic equation

p(s, 1) = 0

defines s as a function of t. Near a value of t where the roots of p are simple, the roots
a(t) are regular analytic functions of t; near a multiple root the roots have an
algebraic singularity and can be expressed as power series in a fractional power of t:

x
a(t) = E r,t'l't.

0

(40)'

On the other hand, we know from Theorem 4 of Chapter 8 that for real t, the matrix
A(t) is self-adjoint and therefore all its eigenvalues are real. Since fractional powers
oft have complex values for real t, we can deduce that in (40)' only integer powers of
t occur, that is, that the eigenvalues a(t) are regular analytic functions of t.

5. AVOIDANCE OF CROSSING

The discussion at the end of this chapter indicates that multiple eigenvalues of a
matrix function A(t) have to be handled with care, even when the values of the
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function are self-adjoint matrices. This brings up the question, How likely is it that
A(t) will have multiple eigenvalues for some values of t? The answer is, "Not very
likely"; before making this precise, we describe a numerical experiment.

Choose a value of n, and then pick at random two real, symmetric n x n matrices
B and M. Define A(t) to be

A(t) = B + M. (41)

Calculate numerically the eigenvalues of A(t) at a sufficiently dense set of values of
t. The following behavior emerges: as t approaches certain values of 1, a pair of
adjacent eigenvalues al (t) and a2(t) appear to be on a collision course; yet at the last
minute they turn aside:

I

This phenomenon, called avoidance of crossing, was discovered by physicists in the
early days of quantum mechanics. The explanation of avoidance of crossing was
given by Wigner and von Neumann; it hinges on the size of the set of real, symmetric
matrices which have multiple eigenvalues, called degenerate in the physics
literature.

The set of all real, symmetric n x n matrices forms a linear space of dimension
N = n(n + 1)/2. There is another way of parametrizing these matrices, namely by
their eigenvectors and eigenvalues. We recall from Chapter 8 that the eigenvalues are
real, and in case they are distinct, the eigenvectors are orthogonal; we shall choose
them to have length 1. The first eigenvector, corresponding to the largest eigenvalue,
depends on n - 1 parameters; the second one, constrained to be orthogonal to the
first eigenvector, depends on n - 2 parameters, and so on, all the way to the (n - 1)st
eigenvector that depends on one parameter. The last eigenvector is then determined,
up to a factor plus or minus 1. The total number of these parameters is
(n - 1) + (n - 2) + .. + I = n(n - 1)/2; to these we add the n eigenvalues, for
a total of n(n - 1)/2 + n = n(n + 1)/2 = N parameters, as before.

We turn now to the degenerate matrices, which have two equal eigenvalues, the
rest distinct from it and each other. The first eigenvector, corresponding to the largest
of the simple eigenvalues, depends on n - 1 parameters, the next one on n - 2
parameters, and so on, all the way down to the last simple eigenvector that depends
on two parameters. The remaining eigenspace is then uniquely determined. The total
number of these parameters is (n - 1 ) + + 2 = (n(n - 1))/2 - 1: to these we
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add the n - 1 distinct eigenvalues, for a total of (n(n - 1))/2) - 1 + n - 1 =
(n(n+l))/2)-2=N-2.

This explains the avoidance of crossing: a line or curve lying in N-dimensional
space will in general avoid intersecting a surface depending on N - 2 parameters.

EXERCISE 8. (a) Show that the set of all complex, self-adjoint n x n matrices
forms N = nz-dimensional linear space over the reals,

(b) Show that the set of complex, self-adjoint n x n matrices that have one double
and n - 2 simple eigenvalues can be described in terms of N - 3 real parameters.

EXERCISE 9. Choose in (4l) at random two self-adjoint 10 x 10 matrices M and
B. Using available software (MATLAB, MAPLE, etc.) calculate and graph at
suitable intervals the 10 eigenvalues of B + tM as functions of t over some
t-segment.

The graph of the eigenvalues of such a one-parameter family of 12 x 12
self-adjoint matrices ornaments the cover of this volume; they were computed
by David Muraki.



CHAPTER 10

Matrix Inequalities

In this chapter we study self-adjoint mappings of a Euclidean space into itself that
are positive. In Section 1 we state and prove the basic properties of positive
mappings and properties of the relation A < B. In Section 2 we derive some
inequalities for the determinant of positive matrices. In Section 3 we study the
dependence of the eigenvalues on the matrix in light of the partial order A < B. In
Section 4 we show how to decompose arbitrary mappings of Euclidean space into
itself as a product of self-adjoint and unitary maps.

1. POSITIVITY

We recall from Chapter 8 the definition of a positive mapping:

Definition. A self-adjoint linear mapping H from a real or complex Euclidean
space into itself is called positive if

(x,Hx)>0 for all x#0. (1)

Positivity of H is denoted as H > 0 or 0 < H.

We call a self-adjoint map K nonnegative if the associated quadratic form is

(x. Kx) > 0 for all x. (2)

Nonnegativity of K is denoted as K > 0 or 0 _< K.
The basic properties of positive maps are contained in the following theorem.

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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Theorem 1

(i) The identity I is positive.
(ii) If M and N are positive, so is their sum M + N, as well as aM for any

positive number a.

(iii) If H is positive and Q is invertible, then

Q*HQ > O. (3)

(iv) H is positive if all its eigenvalues are positive.
(v) Every positive mapping is invertible.
(vi) Every positive mapping has a positive square root, uniquely determined.

(vii) The set of all positive maps is an open subset of the space of all self-
adjoint maps.

(viii) The boundary points of the set of all positive maps are nonnegative maps
that are not positive.

Proof. Part (i) is a consequence of the positivity of the scalar product; part (ii) is
obvious. For part (iii) we write the quadratic form associated with Q" HQ as

(x, Q`HQx) = (Qx, HQx) = (y, Hy), (3)'

where y = Qx. Since Q is invertible, if x # 0,y# 0, and so by (1) the right-hand side
of (3)' is positive.

To prove (iv), let h be an eigenvector of H, a the eigenvalue Hh = ah. Taking the
scalar product with h we get

(h, Hh) = a(h, h);

clearly, this is positive only if a > 0. This shows that the eigenvalues of a positive
mapping are positive.

To show the converse, we appeal to Theorem 4 of Chapter 8, according to which
every self-adjoint mapping H has an orthonormal basis of eigenvectors. Denote these
by hj and the corresponding eigenvalues by aj:

Hh3 = ajhj.

Any vector x can be expressed as a linear combination of the h1:

x = E xjhj.

Since the hj are eigenfunctions,

(4)

(4)'

Hx = E xjajhj. (4)"
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Since the hi form an orthonormal basis,

(x,x)IxiI2, (x,Hx)arlxil2.
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(5)

It follows from (5) that if all aj are positive, H is positive.
We deduce from (5) the following sharpening of inequality (1): for a positive

mapping H,

(x, Hx) > all x II2, for all x, (5)'

where a is the smallest eigenvalue of H.
(v) Every noninvertible map has a nullvector, which is an eigenvector with

eigenvalue zero. Since by (iv) a positive H has all positive eigenvalues, H is invertible.
(vi) We use the existence of an orthonormal basis formed by eigenvectors of H, H

positive. With x expanded as in (4)', we define by

vFx = xi hi, (6)

where aj denotes the positive square root of aJ. Comparing this with the expansion
(4)" of H itself we can verify that (v)2 = H. Clearly, as defined by (6) has
positive eigenvalues, and so by (iv) is positive.

(vii) Let H be any positive mapping, and N any self-adjoint mapping whose
distance from H is less than a,

II N-H II <a,

where a is the smallest eigenvalue of H. We claim that N is invertible. Denote N - H
by M; the assumption is that II M II < a. This means that for all nonzero x in X,

II Mx II <allxll.

By the Schwarz inequality, for x # 0,

I(x,Mx)l << IIx1IIIMx1I <allxll?

Using this and (5)', we see that for x # 0,

(x,Nx)=(x,(H+M)x)=(x,Hx)+(x,Mx)>aIl xll2-all xII2= 0.

This shows that H + M = N is positive.
(viii) By definition of boundary, every mapping K on the boundary is the limit of

mappings H > 0:

lim H,, = K.n-x
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It follows from the Schwarz inequality that for every x,

lim (x, Hnx) = (x, Kx).n-x

Since each H is positive, and the limit of positive numbers is nonnegative, it follows
that K > 0. K cannot be positive, for then by part (vii) it would not be on the
boundary.

EXERCISE I. How many square roots are there of a positive mapping?

Characterizations analogous to parts of Theorem I hold for nonnegative
mappings:

EXERICSE 2. Formulate and prove properties of nonnegative mappings similar
to parts (i), (ii), (iii), (iv), and (vi) of Theorem 1.

Based on the notion of positivity we can define a partial order among self-adjoint
mappings of a given Euclidean space into itself.

Definition. Let M and N be two selfadjoint mappings of a Euclidean space into
itself. We say that M is less than N, denoted as

M<N or N>M, (7)

if N - M is positive:

O<N - M.

The relation M < N is defined analogously.
The following properties are easy consequences of Theorem 1.

Additive Property. If M, < N, and M2 < N2 then

(7)'

M, + M2 < N, + N2. (8)

Transitive Property. If L < M and M < N, then L < N.
Multiplicative Property. If M < N and Q is invertible, then

Q*MQ < Q`NQ. (9)

The partial ordering defined in (7) and (7)' for self-adjoint maps shares some-
but not all-other properties of the natural ordering of real numbers. For instance,
the reciprocal property holds.

Theorem 2. Let M and N denote positive mappings that satisfy

0 <M<N. (10)
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Then
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M-' > N-1. (10)'

First Proof. We start with the case when N = I. By definition, M < I means that
I - M is positive. According to part (iv) of Theorem 1, that means that the
eigenvalues of I - M are positive, that is, that the eigenvalues of M are less than 1.
Since M is positive, the eigenvalues of M lie between 0 and 1. The eigenvalues of
M-' are reciprocals of those of M; therefore the eigenvalues of M-' are greater than
1. That makes the eigenvalues of M-' - I positive; so by part (iv) of Theorem 1,
M-' - I is positive, which makes M-' > 1.

We turn now to any N satisfying (10); according to part (vi) of Theorem 1, we can
factor N = R2, R > 0. According to part (v) of Theorem 1, R is invertible; we use
now property (9), with Q = R, to deduce from (10) that

0<R-'MR-' <R-'NR-' =I.

From what we have already shown, it follows from the equation that the inverse of
R-' MR-' is greater than I:

RM-'R > I.

We use once more property (9), with Q = R-', to deduce that

M-' > R- IR-' = R-2 = N-1.

Second Proof. We shall use the following generally useful calculus lemma.

Lemma 3. Let A(t) be a differentiable function of the real variable whose
values are self-adjoint mappings; the derivative (d/dt)A is then also self-adjoint.
Suppose that (d/dt)A is positive; then A(t) is an increasing function, that is,

A(s) < A(t) when s < t. (11)

Proof Let x be any nonzero vector, independent of t. Then by the assumption
that the derivative of A is positive, we obtain

dt
(x, Ax) = (x-Ax)X. > 0.

So by ordinary calculus, (x.. A(t)x) is an increasing function of t:

(x, A(s)x) < (x, A(t)x) for s < t.

This implies that A(t) - A(s) > 0, which is the meaning of (11).
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Let A(t) be as in Lemma 3, and in addition suppose that A(t) is invertible; we
claim that A-' (t) is a decreasing function of t. To see this we differentiate A-', using
Theorem 2 of Chapter 9:

A-' A-' d A-' .dt

We have assumed that dA/dt is positive, so it follows from part (iii) of Theorem I
that so is A-'(dA/dt)A-1. This shows that the derivative of A- I(t) is negative. It
follows then from Lemma 3 that A-' (t) is decreasing.

We now define

A(t) = M + t(N - M), 0 < t < 1. (12)

Clearly, dA/dt = N - M, positive by assumption (10). It further follows from
assumption (10) that for 0 < t < 1,

A(t) = (I - t)M + tN

is the sum of two positive operators and therefore itself positive. By part (v) of
Theorem I we conclude that A(t) is invertible. We can assert now, as shown above,
that A(t) is a decreasing function:

A-1(0) > A-1(1).

Since A(0) = M, A(I) = N, this is inequality (10)'. This concludes the second proof
of Theorem 2.

The product of two self-adjoint mappings is not, in general, self-adjoint. We
introduce the symmetrized product S of two self-adjoint mappings A and B as

S = AB + BA. (13)

The quadratic form associated with the symmetrized product is

(x, Sx) = (x, ABx) + (x, BAx) = (Ax, Bx) + (Bx, Ax). (14)

In the real case

'(x, Sx) = 2(Ax, Bx). (14)

This formula shows that the symmetrized product of two positive mappings need not
be positive; the conditions (x, Ax) > 0 and (x, Bx) > 0 mean that the pairs of vectors
x, Ax and x, Bx make an angle less than.7r/2. But these restrictions do not prevent the
vectors Ax, Bx from making an angle greater than it/2, which would render (14)'
negative.
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EXERCISE 3. Construct two real, positive 2 x 2 matrices whose symmetrized
product is not positive.

In view of the Exercise 3 the following result is somewhat surprising.

Theorem 4. Let A and B denote two self-adjoint maps with the following
properties:

(i) A is positive.
(ii) The symmetrized product S = AB + BA is positive.

Then B is positive.

Proof. Define B(t) as B(t) = B + tA. We claim that for t > 0 the symmetrized
product of A and B(t) is positive. For

S(t) = AB(t) + B(t)A = AB + BA + 2tA2 = S + 2tA2;

since S and 2tA2 are positive, their sum is positive. We further claim that for t large
enough positive, B(t) is positive. For

(x, B(t)x) = (x, Bx) + t(x, Ax); (15)

A was assumed positive, so by (5)',

(x, Ax)>aIIxII2, a>0.

On the other hand, by the Schwarz inequality

I(x,Bx)I S IIxIIII Bx1I S II B IIIIx112.

Putting these inequalities together with (15), we get

(x,B(t)x) > (ta - II B 11)11 x 112;

clearly this shows that B(t) is positive when to > II B II.
Since B(t) depends continuously on t, if B = B(0) were not positive, there

would be some nonnegative value to between 0 and II B II/a, such that B(to) lies
on the boundary of the set of positive mappings. According to part (viii) of
Theorem 1, a mapping on the boundary is nonnegative but not positive. Such a
mapping B(to) has nonnegative eigenvalues, at least one of which is zero.
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So there is a nonzero vector y such that B(to)y = 0. Setting x = y in (14) with
B = B(to), we obtain

(y, S(to)y) = (Ay, B(to)y) + (B(to)y, Ay) = 0;

this is contrary to the positivity of S(to); therefore B is positive.

In Section 4 we offer a second proof of Theorem 4.
An interesting consequence of Theorem 4 is the following theorem.

Theorem 5. Let M and N denote positive mappings that satisfy

O < M < N; (16)

then

where f denotes the positive square root.

Proof. Define the function A(t) as in (12):

A(t) = M + t(N - M).

We have shown that A(t) is positive when 0 < t < 1; so we can define

R(t) = A(t), 0 < t < 1,

(16)'

(17)

where f is the positive square root. It is not hard to show that R(t), the square root
of a differentiable positive function, is differentiable. We square (17), obtaining
R2 = A; differentiating with respect to t, we obtain

RR + RR =A, (18)

where the dot denotes the derivative with respect to t. Recalling the definition (13) of
symmetrized product we can paraphrase (18) as follows: The symmetrized product
of R and is A.

By hypothesis (16), A = N - M is positive: by construction, so is R. Therefore
using Theorem 4 we conclude that k is positive on the interval [0, 11. It follows then
from Lemma 3 that R(t) is an increasing function of t; in particular,

R(0) < R(1).
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Since R(O) = A(0) _ v/'M--, R(l) = A(1) = V, inequality (16)'
follows.

EXERCISE 4. Show that if 0 < M < N, then (a) MI/4 < N"4. (b) M11 m < NI/',

m a power of 2. (c) log M < log N.
Fractional powers and logarithm are defined by the functional calculus in

Chapter 8. (Hint: logM = m[MII," - I].)

EXERCISE 5. Construct a pair of mappings 0 < M < N such that M2 is not less
than N2. (Hint: Use Exericse 3.)

There is a common theme in Theorems 2 and 5 and Exercises 4 and 5 that can be
expressed by the concept of monotone matrix function.

Definition. A real-valued function f (.s) defined for s > 0 is called a monotone
matrix function if all pairs of self-adjoint mappings M, N satisfying

O<M<N

also satisfy

f(M) <f(N),

where f (M), f (N) are defined by the functional calculus of Chapter 8.

According to Theorems 2 and 5, and Exercise 4, the functions f (s) = -1/s, si/',
logs are monotone matrix functions. Exercise 5 says f (s) = s2 is not.

Positive multiples, sums, and limits of monotone matrix functions are mmf's.
Thus

mi

s+t1' nib>0, tj >0

are mmf's, as is

dm(t)f(s)=as+b-
Jn

s+t' (19)

where a is positive, b is real, and m(t) is a nonnegative measure for which the
integral (19) converges.

Carl Loewner has proved the following beautiful theorem.
Theorem. Every monotone matrix function can be written in the form (19).
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At first glance, this result seems useless, because how can one recognize that a
function f (s) defined on R+ is of form (19)? There is, however, a surprisingly simple
criterion:

Every function f of form (19) can be extended as an analytic function in the upper
half-plane, and has a positive imaginary part there.

EXERCISE 6. Verify that (19) defines f (z) for a complex argument z as an analytic
function, as well as that Im f (z) > 0 for 1m x > 0.

Conversely, a classical theorem of Herglotz and F. Riesz says that every function
analytic in the upper half-plane whose imaginary part is positive there, and which is
real on the positive real axis, is of form (19). For a proof, consult the author's text
entitled Functional Analysis.

The functions - I Is, shy"', m > 1, logs have positive imaginary parts in the upper
half-plane; the functions' does not.

Having talked so much about positive mappings, it is time to present some
examples. Below we describe a method for constructing positive matrices, in fact all
of them.

Definition. Let f , ... , f,be an ordered set of vectors in a Euclidean space. The
matrix G with entries.

is called the Gram matrix of the set of vectors.

Theorem 6. (i) Every Gram matrix is nonnegative.
(ii) The Gram matrix of a set of linearly independent vectors is positive.
(iii) Every positive matrix can be represented as a Gram matrix.

(20)

Proof. The quadratic form associated with a Gram matrix can be expressed as
follows:

(x, Gx) = >xAG, = EU,f)x,xi

_ xf,Exf) =IIEx 11. (20)'

Parts (i) and (ii) follow immediately from (20)'. To prove part (iii), let (H,1) = H
be positive. Define for vectors x and y in C" the nonstandard scalar product W H

defined as

(x,)')H = (x,Hy),
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where (,) is the standard scalar product. The Gram matrix of the unit vectors f, = e; is

(ei, ej)H = (ei, Hej) = hij

EXAMPLE. Take the Euclidean space to consist of real-valued functions on the
interval [0, 1], with the scalar product

(f, g) = Jf(1)g(1)d:.

Choose f = ti-I , j = I, ... , n. The associated Gram matrix is

G.=
I

(21)

EXERCISE 7. Given in positive numbers show that the matrix

G., =
'

I
(22)

J ri+r1+1

is positive.

Example. Take as scalar product

(f,g) = J f(B)8(O)w(O)dO,
0

where w is some given positive real function. Choose f = e'jF', j = -n, ... , n. The
associated (2n + 1) x (2n + 1) Gram matrix is Gkj = ck_j, where

cn = Jw(9)e_ut'°dO.

We conclude this section with a curious result due to 1. Schur.

Theorem 7. Let A = (Aij) and B = (Bij) denote positive matrices. Then
M = (Mij), whose entries are the products of the entries of A and B,

Mij = AijBij

also is a positive matrix.

(23)

In Appendix 4 we shall give a one-line proof of Theorem 7 using tensor products.
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2. THE DETERMINANT OF POSITIVE MATRICES

Theorem 8. The determinant of every positive matrix is positive.

Proof. According to Theorem 3 of Chapter 6, the determinant of a matrix is the
product of its eigenvalues. According to Theorem 1 of this chapter, the eigenvalues
of a positive matrix are positive. Then so is their product.

Theorem 9. Let A and B denote real, self-adjoint, positive n x n matrices.
Then for all t between 0 and I,

det(tA + (1 - t) B) > (det A)'(det B)'-'. (24)

Proof. Take the algorithm of both sides. Since log is a monotonic function, we
get the equivalent inequality: for all t in [0, 1],

log det(tA + (I - t)B) > t log det A + (1 - t) log det B. (24)'

We recall the concept of a concave function of a single variable: A function f(x)
is called concave if its graph between two points lies above the chord connecting
those points. Analytically, this means that for all t in [0, 11,

f(ta + (I - t)b) > If(a) + (1 - t)f(b).

Clearly, (24)' can be interpreted as asserting that the function log det H is concave on
the set of positive matrices. Note that it follows from Theorem l that for A and B
positive, to + (1 - t)B is positive when 0 < t < 1. According to a criterion we learn
in calculus, a function whose second derivative is negative is concave. For example,
the function log t, defined for t positive, has second derivative -1 /t2, and so it is
concave. To prove (24)', we shall calculate the second derivative of the function
f(t) = log det(tA + (I - t)B) and verify that it is negative. We use formula (10) of
Theorem 4 in Chapter 9, valid for matrix valued functions Y(t) that are
differentiable and invertible:

dtlogdetY = tr(Y-1Y). (25)

In our case, Y(t) = B + t(A - B); its derivative is k = A - B, independent of t. So,
differentiating (25) with respect to t, we get

z

dt2log detY = -tr(Y-I ')2. (25)'

Here we have used the product rule, and rules (2)' and (3) from Chapter 9
concerning the differentiation of the trace and the reciprocal of matrix functions.
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According to Theorem 3 of Chapter 6, the trace of a matrix is the sum of its
eigenvalues; and according to Theorem 4 of Chapter 6, the eigenvalues of the square
of a matrix T are the square of the eigenvalues of T. Therefore

tr(Y-Y)2 = a (26)

where as are the eigenvalues of Y- "k. According to Theorem l 1' in Chapter 8, the
eigenvalues aj of the product Y- I Y of a positive matrix Y-I and a self-adjoint matrix
Y are real. It follows that (26) is positive; setting this into (25)', we conclude that the
second derivative of log det Y(t) is negative.

Second Proof. Define C as B- I A; by Theorem 11' of Chapter 8, the product C of
two positive matrices has positive eigenvalues cj. Now rewrite the left-hand side of
(24) as

det B(tB-1 A + (I -t)I) =detBdet(tC+(1 -t)I).

Divide both sides of (24) by det B; the resulting right-hand side can be rewritten as

(detA)'(detB)-' _ (detC)'.

What is to be shown is that

det(tC + (1 - t)I) > (det C)'.

Expressing the determinants as the product of eigenvalues gives

ll(tcj + I - t) fl ci, .

We claim that for all t between 0 and 1 each factor on the left is greater than the
corresponding factor on the right:

tc+(I -t)>c'.

This is true because c' is a convex function of t and equality holds when t = 0 or
t= 1. O

Next we give a useful estimate for the determinant of a positive matrix.

Theorem 10. The determinant of a positive matrix H does not exceed the
product of its diagonal elements:

det H < 11 hr;. (27)
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Proof. Since H is positive, so are its diagonal entries. Define d; = 1/, and
denote by D the diagonal matrix with diagonal entries d,. Define the matrix B by

B = DHD.

Clearly, B is symmetric and positive and its diagonal entries are all I's. By the
multiplicative property of determinants,

det B = det H det D2 =
det H

fi h;,
(28)

So (27) is the same as det B < 1. To show this, denote the eigenvalues of B by
bi,... , b,,, positive quantities since B is a positive matrix. By the arithmetic-
geometric mean inequality

fi b, < (> b;/n) .

We can rewrite this as

det B <
(trB)

(29)
n l

Since the diagonal entries of B are all l's, tr B = n, so det B < 1 follows.

Theorem 10 has this consequence.

Theorem 11. Let T be any n x n matrix whose columns are C, c2i ..., c,,. Then
the determinant of T is in absolute value not greater than the product of the length of
its columns:

IdetTi < H ii ii.

Proof. Define H = T*T; its diagonal elements are

h« I;tj, lj,tl, _ I t i12 = II c, 112
1 J

(30)

According to Theorem 1, T`T is positive, except when T is noninvertible, in which
case det T = 0, so there is nothing to prove. We appeal now to Theorem tO and
deduce that

detH<fj 11c,112.
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Since the determinant is multiplicative, and since detT* = detT,

detH = detT*detT = IdetTI2.

Combining the last two and taking its square root we obtain inequality (30) of
Theorem 11.

Inequality (30) is due to Hadamard and is useful in applications. In the real case it
has an obvious geometrical meaning: among all parallelepipeds with given side
lengths 11 cj 11, the one with the largest volume is rectangular.

We return to Theorem 9 about determinants; the first proof we gave for it used the
differential calculus. We present now a proof based on integral calculus. This proof
works for real, symmetric matrices; it is based on an integral formula for the
determinant of real positive matrices.

Theorem 12. Let H be an n x n real, symmetric, positive matrix. Then

n»/z
Je-(x°ur)dx. (31)

det H R"

Proof It follows from inequality (5)' that the integral (31) converges. To evaluate
it, we appeal to the spectral theorem for self-adjoint mappings, see Theorem 4' of
Chapter 8, and introduce new coordinates

x = My, (32)

M an orthogonal matrix so chosen that the quadratic form is diagonalized:

(x, Hx) = (My, HM),) = (y, M*HMy) = E ajyj?. (33)

The aj are the eigenvalues of H. We substitute (33) into (31); since the matrix M is an
isometry, it preserves volume as well: Idet MI = 1. In terms of the new variables the
integrand is a product of functions of single variables, so we can rewrite the right
side of (31) as a product of one-dimensional integrals:

f e-E",, dy = f 7J a-`jy dy = H j e-°,' dy; (34)

The change of variable /y = z turns each of the integrals on the right in (34) into

j4dz
e

aj
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According to a result of calculus

so that the right-hand side of (34) equals
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e12 7rn/2

f Uj (fl a,) 1/2

(35)

(34)

According to formula (15), Theorem 3 in Chapter 6 the determinant of H is the
product of its eigenvalues; so formula (31) of Theorem 12 follows from (34) and
(34)'.

EXERCISE 8. Look up a proof of the calculus result (35).

Proof of Theorem 9. We take in formula (35), H = to + (1 - t)B, where A, B
are arbitrary real, positive matrices:

det(tA+(1-:)B) R'

e-r(.r,Ax)e (I-r)(x,B.r)dx. (36)
R^

We appeal now to Holder's inequality:

11u'
I

/n
Jfdx < (JfPdx) (Jgcix)

where p, q are real, positive numbers such that

We take

f(x) = e-'(x,Ar) g(x) = e (1 rxx,B.r)1

and choose p = 1 It, q = 1/(I - t); we deduce that the integral on the right in (36) is
not greater than

r 1-r

C f
e-(x.Ar)dxl/ (Je_dx)
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Using formula (31) to express these integrals we get

r
.n/2 l' nn/2 I -t 7rn/2

det A/ det B/ (det AY (det B) I '
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Since this is an upper bound for (36), inequality (24) follows.

Formula (31) also can be used to give another proof of Theorem 10.

Proof. In the integral on the right in (31) we write the vector variable x as
x = uei + z, where u is the first component of x and z the rest of them. Then

(x, Hx) = h, I u2 + 2ul (z) + (z, H I I z),

where 1(z) is some linear function of z. Setting this into (31) gives

,,n/2
r Je__2hu1_H1dudz. (37)
J

r r e-h,hn2+2n1-(z.Hjjz)du dz.

Adding and dividing by 2 gives

J

c+
2

c_I

du dzf JeI11
'

where c abbreviates e2nl. Since c is positive,

C+c- I

(37)'

>1.2

Therefore (37)' is bounded from below by

J

Je_Jhhu12e_Hh1dudz.

The integrand is now the product of a function of u and of z, and so is the product of
two integrals, both of which can be evaluated by (31):

.I/2 (n-l)/2

det Hl l
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Since this is a lower bound for the right-hand side of (37), we obtain that
det H < h11 det H1 . Inequality (27) follows by induction on the size of H.

3. EIGENVALUES

In this section we present a number of interesting and useful results on
eigenvalues.

Lemma 13. Let A be a self-adjoint map of a Euclidean space U into itself. We
denote by p+ (A) the number of positive eigenvalues of A, and denote by p_ (A) the
number of its negative eigenvalues.

p+(A) = maximum dimension of subspace S of U such that (Au, u) is positive
on S.

p_ (A) = maximum dimension of subspace S of U such (Au, u) is negative on S.

Proof. This follows from the minmax characterization of the eigenvalues of A;
see Theorem 10, as well as Lemma 2 of Chapter 8.

Theorem 14. Let U and A be as in Lemma 13, and let V be a subspace of U
whose dimension is one less than the dimension of U:

dim V = dim U - 1.

Denote by P orthogonal projection onto V. Then PAP is a self-adjoint map of U into
U that maps V into V; we denote by B the restriction of PAP to V. We claim that

p+ (A) - I < p+ (B) < p+ (A), (38)+

and

p- (A) - I <p-(B) <p-(A).
(38)_

Proof. Let T denote a subspace of V of dimension p+ (B) on which B is positive:

(Bv,v)>0, vin T, v#0.

By definition of B, we can write this as

0 < (PAPv, v) = (APv, Pv).
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Since v belongs to T, a subspace of V, Pv = v. So we conclude that A is positive on T;
this proves that

p+ (B) < p+(A).

To estimate p+(B) from below, we choose a subspace S of U, of dimension p+(A)
on which A is positive:

(Au, u) > 0, u in S, u 54 0.

Denote the intersection of S and V by T:

T=SnV.

We claim that the dimension of T is at most one less than the dimension of S:

dim S - 1 < dim T.

If S is a subspace of V, then T = S and dim T = dim S. If not, choose a basis in
S: {s, , ... , Sk }. At least one of these. say si, does not belong to V; this means that s,
has a nonzero component orthogonal to V. Then we can choose scalars a2.... , ak
such that

S2 - a2S1,...,Sk - akS,

belong to V. They are linearly independent, since s, , ... . sk are linearly independent.
It follows that

dim S - 1 < dim T,

as asserted.
We claim that B is positive on T. Take any v # 0 in T:

(Bv, v) = (PAPv, v) = (APv, Pv) = (Av, v),

since v belongs to V. Since v also belongs to S, (Av, v) > 0.
Since p+(B) is defined as the dimension of the largest subspace on which B is

positive, and since dim T > dim S - 1, p+(B) > p+(A) - 1 follows. This completes
the proof of (38)+; (38)_ can be proved similarly.

An immediate consequence of Theorem 14 is the following theorem.

Theorem 15. Let U, V, A, and B be as in Theorem 14. Denote the eigenvalues
of A as a1,... , a,,, and denote those of B as b1,. .. , The eigenvalues of B
separate the eigenvalues of A:

a, < b, < a2 < a,,. (39)
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Proof. Apply Theorem 14 to A - c and B - c. We conclude that the number of b;
less than c is not greater than the number of a; less than c, and at most one less. We
claim that a; < b; j if not, we could choose b; < c < a; and obtain a contradiction.
We can show analogously that b; < a;+,. This proves that a; < b; < a;+,, as asserted
in (39).

Take U to be l° with the standard Euclidean structure, and take A to be any n x n
self-adjoint matrix. Fix i to be some natural number between 1 and n, and take V to
consist of all vectors whose ith component is zero. Theorem 14 says that the
eigenvalues of the ith principal minor of A separate the eigenvalues of A.

EXERCISE 9. Extend Theorem 14 to the case when dim V = dim U - m, where
m is greater than 1.

The following result is of fundamental interest in mathematical physics; see, for
example, Theorem 4 of Chapter 11.

Theorem 16. Let M and N denote self-adjoint k x k matrices satisfying

M < N. (40)

Denote the eigenvalues of M, arranged in increasing order, by m, < < Mk, and
those of N by n, < < nk. We claim that

mj < nj, j = 1,...,k. (41)

First Proof. We appeal to the minmax principle, Theorem 10 in Chapter 8,
formula (40), according to which

,= min max (42)mj
dims =j X ins (X, X)

(x, Nx)
= i

,,,

(42)nj m n max
dimS=j x in S (X, x)

Denote by T the subspace of dimension j for which the minimum in (42) is reached,
and denote by y the vector in T where (x, Mx)/(x,x) achieves its maximum; we take
y to be normalized as 11 y 11 = 1. Then by (42),,,,

mj (Y, My),

while from (42),,,

(X Mx)

(Y, NY) < nj.
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Since the meaning of (40) is that (y, My) < (y, Ny) for all y # 0, (41)
follows.

If the hypothesis (40) is weakened to M < N, the weakened conclusion mj < nj
can be reached by the same argument.

Second Proof. We connect M and N by a straight line:

A(t) = M + t(N - M); (43)

we also use calculus, as we have done so profitably in Section 1. Assuming for a
moment that the eigenvalues of A(t) are distinct, we use Theorem 7 of Chapter 9 to
conclude that the eigenvalues of A(t) depend differentiably on t, and we use formula
(24) of that chapter for the value of the derivative. Since A is self-adjoint, we can
identify in this formula the eigenvector I of AT with the eigenvector h of A itself.
Normalizing h so that II h II = 1, we have the following version of (24), Chapter 9,
for the derivative of the eigenvalue a in Ah = ah:

d
dt=(h'dAh)'

(43)'

For A(t) in (43), dA/dt = N - M is positive according to hypothesis (41); therefore
the right-hand side of (43)' is positive. This proves that da/dt is positive, and
therefore a(t) is an increasing function of t; in particular, a(0) < a(l). Since
A(0) = M, A(l) = N, this proves (41) in case A(t) has distinct eigenvalues for all t
in [0, 1].

In case A(t) has multiple eigenvalues for a finite set of t, the above argument
shows that each ap(t) is increasing between two such values of t; that is enough to
draw the conclusion (41). Or we can make use of the observation made at the end of
Chapter 9 that the degenerate matrices form a variety of codimension 2 and can be
avoided by changing M by a small amount and passing to the limit.

The following result is very useful.

Theorem 17. Let M and N be self-adjoint k x k matrices mj and nj their
eigenvalues arrayed in increasing order. Then

Inl - mnI :5 11 M - NII. (44)

Proof Denote II M - N11 by d. It is easy to see that

N-dI<M<N+dI. (44)'

Inequality (44) follows from (44)' and (41).
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EXERCISE 10. Prove inequality (44)'.

Wielandt and Hoffman have proved the following interesting result.

Theorem 18. Let M, N be self-adjoint k x k matrices and m1 and n1 their
eigenvalues arranged in increasing order. Then

E(n1-m1)2<II N - MII

where II N - M 112 is the Hilbert-Schmidt norm defined by

IICII2IcijI2.

(45)

(46)

Proof The Hilbert-Schmidt norm of any matrix can be expressed as a trace:

II C II2 = trC`C. (46)'

For C self-adjoint,

IICII2=trC2. (46)"

Using (46)" we can rewrite inequality (45) as

1:(n1 - in)2 < tr(N - M)2.

Expanding both sides and using the linearity and commutativity of trace gives

n;' - 2n1m1 + mj < trN2 - 2 tr(NM) + tr M2. (47)

According to Theorem 3 of Chapter 6, the trace of N2 is the sum of the eigenvalues
of N2. According to the spectral mapping theorem, the eigenvalues of N2 are n1 .

Therefore

2
Et trN, E m12 = trM-;

so inequality (47) can be restated as

njm1 > tr(NM). (47)'

To prove this we fix M and consider all self-adjoint matrices N whose eigenvalues
are ni, ... , nk. The set of such matrices N forms a bounded set in the space of all
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self-adjoint matrices. By compactness, there is among these that matrix N that
renders the right-hand side of (47)' largest. According to calculus, the maximizing
matrix Nmax has the following property: if N(t) is a differentiable function whose
values are self-adjoint matrices with eigenvalues n i , ... , n,t, and N(O) = Nmax, then

d
tr(N(t)M) = 0. (48)

LO

Let A denote any anti-self-adjoint matrix; according to Theorem 5, part (e),
Chapter 9, eA` is unitary for any real values of t. Now define

N(t) = eA'Nmaxe-Ar (49)

Clearly, N(t) is self-adjoint and has the same eigenvalues as Nn,ax. According to part
(d) of Theorem 5, Chapter 9,

teAt = AeA` = eA`A.

Using the rules of differentiation developed in Chapter 9, we get, upon
differentiating (49), that

dt N(t) = eA(ANmax - NmaxA)e-Ar

Setting this into (48) gives at t = 0

d tr(N(t)M) = trl dNM 1

r=0 \\\

= tr(ANmaxM - NmaxAM) = 0.
r=0

Using the commutativity of trace, we can rewrite this as

tr(A(NmaxM - MNmax)) = 0. (48)'

The commutator of two self-adjoint matrices N.ax and M is anti-self-adjoint, so we
may choose

A = NmaxM - MNmax (50)

Setting this into (48)' reveals that trA2 = 0; since by (46)', for anti-self-adjoint A,

trA2 = -1: Inril2,

we deduce that A = 0, so according to (50) the matrices N,nax and M commute.
Such matrices can be diagonalized simultaneously; the diagonal entries are nj and
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in, in some order. The trace of NmaxM can therefore be computed in this
representation as

E np tnj, (51)

where pp, j = 1, ... , k is some permutation of I,... , k. It is not hard to show, and is
left as an exercise to the reader, that the sum (51) is largest when the nj are arranged
in the same order as the mj, that is, increasingly. This proves inequality (47)' for Nmax
and hence for all N.

EXERCISE I I. Show that (51) is largest when n, and mj are arranged in the same
order.

The next result is useful in many problems of physics.

Theorem 19. Denote by en,in(H) the smallest eigenvalue of a self-adjoint
mapping H in a Euclidean space. We claim that emirs is a concave function of H, that
is, that for0<t< 1,

emin(tL + (1 - t)M) > temin(L) + (1 - t)emin(M) (52)

for any pair of self-adjoint maps L and M. Similarly, emax(H) is a convex function of
H;forO<r<1,

emax(tL+ (I - t)M) < te,nax(L) + (1 - t)e,,,ax(M). (52)'

Proof. We have shown in Chapter 8, equation (37), that the smallest eigenvalue
of a mapping can be characterized as a minimum:

emin (H) = min (x, Hx). (53)
II.YII=i

Let y be a unit vector where (x, Hx), with H = tL + (1 - t)M reaches its minimum.
Then

emin(tL + (1 - t)M) = t(y, Ly) + (I - t) (y, My)

> t min (x, Lx) + (1 - t) min (x, Mx)
IIXII=I IIxII=I

= temin(L) + (1 - t)emin(M).

This proves (52). Since -emax(A) = emin(-A), the convexity of eax(A)
follows.

Note that the main thrust of the argument above is that any function characterized
as the minimum of a collection of linear functions is concave.
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4. REPRESENTATION OF ARBITRARY MAPPINGS
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Every linear mapping Z of a complex Euclidean space into itself can be
decomposed, uniquely, as a sum of a self-adjoint mapping and an anti-self-adjoint
one:

Z = H + A, (54)

where

H* = H, A* = -A. (54)'

Clearly, if (54) and (54)' hold, Z' = H" + A* = H - A, so H and A are given by

H - Z+Z" -Z' - Z
2

A
2

H is called the self-adjoint part of Z, A the anti-self-adjoint part.

Theorem 20. Suppose the self-adjoint part Z is positive:

Z+Z' >0.

Then the eigenvalues of Z have positive real part.

Proof. Using the conjugate symmetry of scalar product in a complex Euclidean
space, and the definition of adjoint, we have the following identity for any vector h:

2 Re(Zh, h) = (Zh, h) + (Zh, h) = (Zh, h) + (h, Zh) = (Zh, h) + (Z*h, h)

= ((Z + Z')h,h).

Since we assumed in Theorem 18 that Z + Z" is positive, we conclude that for any
vector h # 0, (Zh, h) has positive real part.

Let h be an eigenvector for Z of norm 11 h 11= 1, with z the corresponding
eigenvalue, Zh = zh. Then (Zh, h) = z has positive real part.

In Appendix 14 we give a far-reaching extension of Theorem 20.
Theorem 20 can be used to give another proof of Theorem 4 about symmetrized

products: Let A and B be self-adjoint maps, and assume that A and AB + BA = S
are positive. We claim that then B is positive.

Second Proof of Theorem 4. Since A is positive, it has according to Theorem 1 a
square root AI/2 that is invertible. We multiply the relation

AB+BA=S
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by A-112 from the right and the left:

A'12BA-1/z + A-1/2BAi/2 = A-1/2SA-"2. (55)

We introduce the abbreviation

Al/22BA-1/22 = Z (56)

and rewrite (55) as

Z + Z' = A-'12SA-'12. (55)'

Since S is positive, so, according to Theorem 1, is A-1/2SA-1/2; it follows from (55)'
that Z + Z` is positive. By Theorem 20 the eigenvalues of Z have positive real part.

Formula (56) shows that Z and B are similar; therefore they have the same
eigenvalues. Since B is self-adjoint, it has real eigenvalues; so we conclude that the
eigenvalues of B are positive. This, according to Theorem 1, guarantees that B is
positive.

EXERCISE 12. Prove that if the self-adjoint part of Z is positive, then Z is
invertible, and the self-adjoint part of Z` is positive.

The decomposition of an arbitrary Z as a sum of its self-adjoint and anti-self-adjoint
parts is analogous to writing a complex number as the sum of its real and imaginary
parts, and the norm is analogous to the absolute value. The next result strengthens this
analogy. Let a denote any complex number with positive real part; then

- az
z =wa+az

maps the right half-plane Re z > 0 onto the unit disc Iwi < 1. Analogously, we claim
the following:

Theorem 21. Let a be a complex number with Re a > 0. Let Z be a mapping
whose self-adjoint part Z + Z* is positive. Then

W = (I - aZ) (I + iiZ) -' (57)

is a mapping of norm less than 1. Conversely, 11 W 11 < I implies that Z + Z' > 0.

Proof. According to Theorem 20 the eigenvalues z of Z have positive real part. It
follows that the eigenvalues of I + aZ, I + aZ are # 0; therefore I + aZ is invertible.
For any vector x, denote (I + aZ)-1x = y; then by (57),

(I - aZ)y = Wx,
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and by definition of y,

(I + aZ)y = X.
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The condition II W II < 1 means that II Wx 112 < II x 112 for all x 54 0; in terms of y
this can be expressed as

11y -aZy112<II),+aZyll? (58)

Expanding both sides gives

IIy112+lal211Zy112-a(Zy,y)-a(y,Zy)<IIy112+1a1211Zy112
+ a(Zy, y) + a(y, Zy). (59)

Cancelling identical terms and rearranging gives

0 < (a + a) [(Zy, y) + (y, Zy)] = 2 Re a[Z + Z*]y, y). (60)

Since we have assumed that Re a is positive and that Z + Z* > 0, (60) is true.
Conversely, if (60) holds for all y, Z + Z* is positive.

Complex numbers z have not only additive but multiplicative decompositions:
Z = reie, r > 0, Ie'BI = 1. Mappings of Euclidean spaces have similar decomposi-
tions.

Theorem 22. Let A be a linear mapping of a complex Euclidean space into
itself. Then A can be factored as

A = RU, (61)

where R is a nonnegative self-adjoint mapping, and U is unitary. When A is
invertible, R is positive.

Proof Take first the case that A is invertible; then so is A*. For any x # 0,

(AA*x, x) = (A*x, A*x) = II As 112 > 0.

This proves that AA* is a positive mapping. According to Theorem 1, AA* has a
unique positive square root R:

AA* = R2. (62)

Define U as R-IA; then U* = A*R-I, and so by (62),

UU* = R-IAA*R-' = R-'R 2R-I = I.
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It follows that U is unitary. By definition of U as R-' A,

A = RU,

as asserted in (61).
When A is not invertible, AA* is a nonnegative self-adjoint map; it has a uniquely

determined nonnegative square root R. Therefore

II Rx II2 = (Rx,Rx) = (R2x,x) = (AA*x,x)

= (A*x, A*x) = II A*x IIz (63)

Suppose Rx = Ry; then II R(x - y) II = 0, and so according to (63),
II A*(x - y) II = 0, therefore Ax = A*y. This shows that for any u in the range of
R, it = Rx, we can define Vu as A*x. According to (63), V is an isometry; therefore it
can be extended to the whole space as a unitary mapping.

By definition, A* = VR; taking its adjoint gives A = RV*, which is relation (61)
with V* = U. O

According to the spectral representation theorem, the self-adjoint map R can be
expressed as R = WDW*, where D is diagonal and W is unitary. Setting this into
(61) gives A = WDW*U. Denoting W*U as V, we get

A = WDV, (64)

where W and V are unitary and D is diagonal, with nonnegative entries. Equation
(64) is called the singular value decomposition of the mapping A. The diagonal
entries of D are called the singular values of A; they are the nonnegative square roots
of the eigenvalues of AA*.

Take the adjoint of both sides of (61); we get

A" = U*R. (61)*

Denote A* as B, denote U* as V, and restate (61)* as

Theorem 22". Every linear mapping B of a complex Euclidean space can be
factored as

B = MS,

where S is self-adjoint and nonnegative, and M is unitary.

Note. When B maps a real Euclidean space into itself, so do S and M.

EXERCISE 13. Let A be any mapping of a Euclidean space into itself. Show that
AA* and A*A have the same eigenvalues with the same multiplicity.
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EXERCISE 14. Let A be a mapping of a Euclidean space into another Euclidean
space. Show that AA* and A*A have the same nonzero eigenvalues with the same
multiplicity.

EXERCISE 15. Give an example of a 2 x 2 matrix Z whose eigenvalues have
positive real part but Z + Z" is not positive.

EXERCISE 16. Verify that the commutator (50) of two self-adjoint matrices is
anti-self-adjoint.



CHAPTER 1 1

Kinematics and Dynamics

In this chapter we shall illustrate how extremely useful the theory of linear algebra in
general and matrices in particular are for describing motion in space. There are three
sections, on the kinematics of rigid body motions, on the kinematics of fluid flow,
and on the dynamics of small vibrations.

1. THE MOTION OF RIGID BODIES

An isometry was defined in Chapter 7 as a mapping of a Euclidean space into itself
that preserves distances. When the isometry relates the positions of a mechanical
system in three-dimensional real space at two different times, it is called a rigid body
motion. In this section we shall study such motions.

Theorem 10 of Chapter 7 shows that an isometry M that preserves the origin is
linear and satisfies

M*M=1. (1)

As noted in equation (33) of that chapter, the determinant of such an isometry is plus
or minus 1; its value for all rigid body motions is 1.

Theorem 1 (Euler). An isometry M of three-dimensional real Euclidean space
with determinant plus I that is nontrivial, that is not equal to I, is a rotation; it has a
uniquely defined axis of rotation and angle of rotation 0.

Proof. Points f on the axis of rotation remain fixed, so they satisfy

Mf =f: (2)

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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that is, they are eigenvectors of M with eigenvalue 1. We claim that a nontrivial
isometry, det M = 1, has exactly one eigenvalue equal to 1. To see this, look at the
characteristic polynomial of M, p(s) = det(sI - M). Since M is a real matrix, p(s)
has real coefficients. The leading term in p(s) is s3, so p(s) tends to +oc as s tends
to +oo. On the other hand, p(O) = det(-M) = - det M = -1. So p has a root on
the positive axis; that root is an eigenvalue of M. Since M is an isometry, that
eigenvalue can only be plus 1. Furthermore, 1 is a simple eigenvalue; for if a second
eigenvalue were equal to 1, then, since the product of all three eigenvalues equals
det M = 1, the third eigenvalue of M would also be 1. Since M is a normal matrix, it
has a full set of eigenvectors, all with eigenvalue 1; that would make M = I,
excluded as the trivial case.

To see that M is a rotation around the axis formed by the fixed vectors, we
represent M in an orthonormal basis consisting off satisfying (2), and two other
vectors. In this basis the column vector (1,0,0) is an eigenvector of M with
eigenvalue 1; so the first column is (1,0,0). Since the columns of an isometry are
orthogonal unit vectors and M = 1, the matrix M has the form

1 0 0
M= 10 c -s

0 s c
(3)

where c2 + s2 = 1. Thus c = cos 9, s = sin 9, 9 some angle. Clearly, (3) is rotation
around the first axis by angle 0. 11

The rotation angle is easily calculated without introducing a new basis that brings
M into form (3). We recall the definition of trace from Chapter 6 and Theorem 2 in
that chapter, according to which similar matrices have the same trace. Therefore, M
has the same trace in every basis; from (3),

trM = I + 2 cos 9, (4)

hence

2
(4)'

We turn now to rigid motions which keep the origin fixed and which depend on
time t, that is, functions M(t) whose values are rotations. We take M(t) to be the
rotation that brings the configuration at time 0 into the configuration at time t. Thus

M(0) = I. (5)

If we change the reference time from 0 to ti, the function M, describing the motion
from t, to t is

tr M - l
cos 9 =

MI(t) = M(t)M(t,)-'. (6)
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Equation (1) shows that Mµ is left inverse of M; then it is also right inverse:

(7)

We assume that M(t) is a differentiable function of t. Differentiating this with respect
to t and denoting the derivative by the subscript t gives

M,M" + MM* = 0. (8)

We denote

M,M* = A. (9)

Since differentiation and taking the adjoint commute,

A" = MM;;

therefore (8) can be written as

A+A*=0. 10)

This shows that A(t) is antisymmetric. Equation (9) itself can be rewritten by
multiplying by M on the right and using (1);

Mt = AM.

Note that if we differentiate (6) and use (11) we get the same equation

M,, = AM,. (11),

This shows the significance of A(t), for the motion is independent of the reference
time; A(t) is called the infinitesimal generator of the motion.

EXERCISE 1. Show that if M(t) satisfies a differential equation of form (11),
where A(t) is antisymmetric for each t and the initial condition (5), then M(t) is a
rotation for every t.

EXERCISE 2. Suppose that A is independent of t; show that the solution of
equation (11) satisfying the initial condition (5) is

M(t) = edA (12)

EXERCISE 3. Show that when A depends on t, equation (11) is not solved by

M(t) = ef0 A(s)ds

unless A(t) and A(s) commute for all s and t.
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We investigate now M(t) near t = 0; we assume that M(t) 34 I for t # 0; then for
each t # 0, M(t) has a unique axis of rotation f(t):

M(t) f (t) = f (t).

We assume that f(t) depends differentiably on t; differentiating the preceding
formula gives

Mf+Mf,=f,.

We assume that both f (t) and f,(t) have limits as t -> 0. Letting t -ti 0 in this formula
gives

Mcf(0) + M(0)f, =f'. (13)

Using (11) and (5), we get

A(0) f (0) = 0. (14)

We claim that if A(O) 0 0 then this equation has essentially one solution, that is, all
are multiples of each other. To see that there is a nontrivial solution, recall that A
is antisymmetric; for n odd,

det A = det A* = det(-A) = (-1)" det A = - det A,

from which it follows that det A = 0, that is, the determinant of an antisymmetric
matrix of odd order is zero. This proves that A is not invertible, so that (14) has a
nontrivial solution. This fact can also be seen directly for 3 x 3 matrices by writing
out

0 a b
A= -a 0 c (15)

-b -c 0

Inspection shows that

f=
-c

b , (16)

-a

lies in the nullspace of A.

EXERCISE 4. Show that if A in (15) is not equal to 0, then all vectors annihilated
by A are multiples of (16).

EXERCISE 5. Show that the two other eigenvalues of A are ±i a2 + b2 + c2.
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EXERCISE 6. Show that the motion M(t) described by (12) is rotation around the
axis through the vector f given by formula (16). Show that the angle of rotation is
t a2 -b2+ c2. (Hint: Use formula (4)'.)

The one-dimensional subspace spanned by f(0) satisfying (14), being the limit of
the axes of rotation f(t), is called the instantaneous axis of rotation of the motion at
t = 0.

Let 0(t) denote the angle through which M(t) rotates. Formula (4)' shows that 0(t)
is a differentiable function of t; since M(0) = I, it follows that trM(0) = 3, and so
by (4)' cos 0(0) = 1. This shows that 0(0) = 0.

We determine now the derivative of 0 at t = 0. For this purpose we differentiate
(4)' twice with respect to t. Since trace is a linear function of matrices, the derivative
of the trace is the trace of the derivative, and so we get

0-02 1

cos0=2trM,,.

Setting t = 0 gives

0;(0) = - I (17)

To express M,,(0) we differentiate (11):

M,, = A,M + AM, = A,M + A2M.

Setting t = 0 gives

M,,(0) = A,(0) + A2(0).

Take the trace of both sides. Since A(t) is antisymmetric for every t, so is A,; the trace
of an antisymmetric matrix being zero, we get trA2(0). Using formula
(15), a brief calculation gives

trA2(0) = -2(a2 + b2 + c2).

Combining the last two relations and setting it into (17) gives

0,(0) = a 2 + b 2 + c2.

Compare this with (16); we get

10,1 = V1. (18)

The quantity 0, is called the instantaneous angular velocity of the motion; the vector
f given by (16) is called the instantaneous angular velocity vector.
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EXERCISE 7. Show that the commutator

[A, B] = AB - BA

of two antisymmetric matrices is antisymmetric.
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EXERCISE 8. Let A denote the 3 x 3 matrix (15); we denote the associated null
vector (16) byfA. Obviously, f depends linearly on A.

(a) Let A and B denote two 3 x 3 antisymmetric matrices. Show that

trAB = -2(fA,fa),

where (,) denotes the standard scalar product for vectors in Q.

EXERCISE 9. Show that the cross product can be expressed as

fA,BI =fA xfB

2. THE KINEMATICS OF FLUID FLOW

The concept of angular velocity vector is also useful for discussing motions that are
not rigid, such as the motion of fluids. We describe the motion of a fluid by

x = x(y, t); (19)

here x denotes the position of a point in the fluid at time i that at time zero was
located at y:

x(y,0) = y. (19)0

The partial derivative of x with respect to t, y fixed, is the velocity v of the flow:

atx(y,t) = x,(y,r) = v(y,t).

The mapping y -> x, t fixed, is described locally by the Jacobian matrix

J(y, t) = -y , that is, Jy = y .

It follows from (19)0 that

(20)

(21)

J(y, 0) = I. (21)0
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We learn in the integral calculus of functions of several variables that the
determinant of the Jacobian J(y, t) is the factor by which the volume of the fluid
initially at y is expanded at time t. We assume that the fluid is never compressed to
zero. Since at t = 0, det J(y, 0) = det I = 1 is positive, it follows that det J(y, t) is
positive for all t.

We appeal now to Theorem 22' of Chapter 10 to factor the matrix J as

J = MS, (22)

M = M(y, t) a rotation, S = S(y, t) selfadjoint and positive. Since J is real, so are M
and S. Since det J and det S are positive, so is det M. Since J(t) I as t -> 0, it
follows, see the proof of Theorem 22 in Chapter 10, that also S and M --> I as t -> 0.

It follows from the spectral theory of self-adjoint matrices that S acts as
compression or dilation along the three axes that are the eigenvectors of S. M is
rotation; we shall calculate now the rate of rotation by the action of M. To do this we
differentiate (22) with respect to t:

J, = MS, + M,S. (22)'

We multiply (22) by M* on the left; since M*M = I we get

M*J = S.

We multiply this relation by M, from the left, make use of the differential equation
M, = AM, see (11), and that MM* = I.

Setting this into (22)' gives

Set t = 0:

M,S = AMM"J = AJ.

J,=MS,+AJ.

J,(O) = S,(O) + A(O).

(23)

(23)0

We recall from (10) that A(O) is anti-self-adjoint. S, on the other hand, being the
derivative of self-adjoint matrices, is itself self-adjoint. Thus (23)0 is the
decomposition of J,(O) into its self-adjoint and anti-self-adjoint parts.

Differentiating (21) with respect to t and using (20) gives

J, =
09V

, (24)

09)

that is,

J,j _
av`

(24)'
ayi
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Thus the self-adjoint and anti-self-adjoint parts of J,(0) are

s..
(o)

=
I /av;

+
av l ,

2 ayeTY,
I /av; _ avjl

(0)
2 ayi ayr

In (15) we have given the names a, b, c to the entries of A:

1 (OVI _ 8v2) b _ I (avi _ av3'\

a-2 aye ayi 2 5y3 a)'i '

I 09V2 av3

= 2 ay3 - aye

Set this into formula (16) for the instantaneous angular velocity vector:

f
_I

2

av3 av2

aye Y3

av, av3

ay3 OYi

av2 avi

OYI - aye

= 2 curl v.
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(25)

(25)'

(26)

In words: A fluid that is flowing with velocity v has instantaneous angular velocity
equal to 2 curl v, called its vorticity. A flow for which curl v = 0 is called
irrotational.

We recall from advanced calculus that a vector field v whose curl is zero can, in
any simply connected domain, be written as the gradient of some scalar function
Thus for an irrotational flow, the velocity is

v = grad 0;

is called the velocity potential.
We calculate now the rate at which the fluid is being expanded. We saw earlier

that expansion is det J. Therefore the rate at which fluid is expanded is (dldt) det J. In
Chapter 9, Theorem 4, we have given a formula, equation (10), for the logarithmic
derivative of the determinant:

dtlogdetJ = tr(JJ,). (27)

We set t = 0; according to (21)0, J(0) = I; therefore we can rewrite equation (27) as

dtdetJ(0) = trJ,(0).
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By (24)', J,ij = Ovi/Oyi; therefore

(27)'
dt 8yi

In words: A fluid that is flowing with velocity v is being expanded at the rate div v.
That is why the velocity field of an incompressible fluid is divergence free.

3. THE FREQUENCY OF SMALL VIBRATIONS

By small vibrations we mean motions of small amplitude about a point of
equilibrium. Since the amplitude is small, the equation of motion can be taken to be
linear. Let us start with the one-dimensional case, the vibration of a mass m under the
action of a spring. Denote by x = x(t) displacement of the mass from equilibrium
x = 0. The force of the spring, restoring the mass toward equilibrium, is taken to
be -kx, k a positive constant. Newton's law of motion, force equals mass times
acceleration, says that,

mx + kx = 0; (28)

here the dot symbol denotes differentiation with respect to t.
Multiply (28) by x:

mxX + kxk =
dt

I2,nX2 + 2x21 = 0;

therefore

Zmx2+2x2=E
(29)

is a constant, independent of t. The first term in (29) is the kinetic energy of a mass in
moving with velocity x; the second term is the potential energy stored in a spring
displaced by the amount x. That their sum, E, is constant expresses the conservation
of total energy.

The equation of motion (28) can be solved explicitly: All solutions are of the form

x(t) = a sin t + 9) (30)

a is called the amplitude, 0 the phase. All solutions (30) are periodic in t, with period
p = 27r m/k. The frequency, defined as the reciprocal of the period, is the number
of vibrations the system performs per unit time:

frequency =I
V

(31)
2n m
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We note that part of this result can be deduced by dimensional analysis. From the
fact that kx is a force, we deduce that

dim k length = dim force
mass length

= mass acceleration =
time'

So

dimk --
mass

time2

The only quantity constructed out of the two parameters in. and k whose dimension is
time is const VG-ilk. So we conclude that the period p of motion is given by

p = cons[ m/k.

Formula (31) shows that frequency is an increasing function of k, and a decreasing
function of in. Intuitively this is clear; increasing k makes the spring stiffer and the
vibration faster; the smaller the mass, the faster the vibration.

We present now a far-reaching generalization of this result to the motion of a
system of n masses on a line, each linked elastically to each other and to the origin.
Denote by xi the position of the ith particle; Newton's second law of motion for the
ith particle is

mixi -f, = 0, (32)

where f, is the total force acting on the ith particle and ini is its mass. We take the
origin to be a point of equilibrium for the system, that is, all f, are zero when all the xi
are zero.

We denote by f,1 the force exerted by the jth particle on the ith. According to
Newton's third law, the force exerted by the ith particle on the jth is -fl. We take f1
to be proportional to the distance of xi and x1:

f,=ki1(xx-xi), i0j (33)

To satisfy f1 = fi we take kit = kki. Finally, we take the force exerted from the
origin on particle i to be -kixi. Altogether we have

f = k ; 1 x 1 , kii = -ki - k, . (33)'
i i

We now rewrite the system (32) in matrix form as

Mx+Kx=0; (32)'
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here x denotes the vector (XI, X2, ... , XIX, M is a diagonal matrix with entries m,, and
the elements of K are -k, from (33)'. The matrix K is real and symmetric; then
taking the scalar product of (32)' with x we obtain

(x, Mx) + (x, Kx) = 0.

Using the symmetry of K and M we can rewrite this as

from which we conclude that

d
dt [2 (x,

M.,)
+ I (x, Kx)J = 0,

20c,Mx)+I(x,Kx)=E (34)

is a constant independent of t. The first term on the left-hand side is the kinetic
energy of the masses, the second term the potential energy stored in the system when
the particles have been displaced from the origin to x. That their sum, E, is constant
during the motion is an expression of the conservation of total energy.

We assume now that all the forces are attractive, that is, that ki, and ki are positive.
We claim that then the matrix K is positive. For proof see Theorem 5 at the end of
this chapter. According to inequality (5)' of Chapter 10, a positive matrix K satisfies
for all x,

a1Ix112<(x,Kx), a positive.

Since the diagonal matrix M is positive, combining the above inequality with (34)
gives

a11x112<E.

This shows that the amplitude 11 x 11 is uniformly bounded for all time, and
furthermore if the total energy E is sufficiently small, the amplitude 11 x 11 is small.

A second important consequence of the positivity of K is

Theorem 2. Solutions of the differential equation (32)' are uniquely
determined by their initial data x(0) and x(0). That is, two solutions that have the
same initial data are equal for all time.

Proof. Since equation (32)' is linear, the difference of two solutions is again a
solution. Therefore it is sufficient to prove that if a solution x has zero initial data,
then x(t) is zero for all t. To see this, we observe that if x(0) = 0, x(0) = 0, then
energy E at t = 0 is zero. Therefore energy is zero for all t. But energy defined by
(34) is the sum of two nonnegative terms; therefore each is zero for all t.
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Since equation (32)' is linear, its solutions form a linear space. We shall show that
the dimension of this space of solutions is <2n, where n is the number of masses. To
see this, map each solution x(t) into its initial data x(0), z(0). Since there are n
particles, their initial data belong to a 2n-dimensional linear space. This mapping is
linear; we claim that it is 1-to-1. According to Theorem 2, two solutions with the
same initial data are equal; in particular the nullspace of this map is {0}. Then it
follows from Theorem 1 of Chapter 3 that the dimension of the space of solutions is
< 2n.

We turn now to finding all solutions of the equations of motion (32)'. Since the
matrices M and K are constant, differentiating equation (32)' with respect to t gives

M.F+Ki=0.

In words: If x(t) is a solution of (32)', so is x(t).
The solutions of (32)' form a finite-dimensional space. The mapping x -p x maps

this space into itself. According to the spectral theorem, the eigenfunctions and
generealized eigenfunctions of this mapping span the space.

Eigenfunctions of the map x i satisfy the equation x = ax; the solutions of this
are x(t) = e-"' h, where a is a complex number, h is a vector with n components, and
n is the number of particles. Since we have shown above that each solution of (32)' is
uniformly bounded for all t, it follows that a is pure imaginary: a = ic, c real. To
determine c and h we set x = e'h into (32)'. We get, after dividing by e"', that

c2Mh = Kh. (35)

This is an eigenvalue problem we have already encountered in Chapter 8, equation
(48). We can reduce (35) to a standard eigenvalue problem by introducing
M112h = k as new unknown vector into (35) and then multiplying equation (35) on
the left by M-1/2. We get

c2k = M-1/2KM-'12k. (35)'

Since M-'12KM-'12 is self-adjoint, it has n linearly independent eigenvectors
ki, ... , k,,, with corresponding eigenvalues ci , .... c,2,. Since, as we shall show, K is a
positive matrix, so is M-'12KM-'"2. Therefore the cJ are real numbers; we take them
to be positive.

The corresponding n solutions of the differential equation (32)' are e"'"'h1, whose
real and imaginary parts also are solutions:

(cos cjt)hj, (sin c1t)hj, (36)

as are all linear combinations of them:

aj(cos clt)hj + bb(sin cct)hj = x(t); (36)'

the ai and bl are arbitrary real numbers.
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Theorem 3. Every solution of the differential equation (32)' is of form (36).

Proof. Solutions of the form (36)' form a 2n-dimensional space. We have shown
that the set of all solutions is a linear space of dimension <2n. It follows that all
solutions are of form (36)'.

ExERCISE 10. Verify that solutions of the form (36) form a 2n-dimensional
linear space.

The special solutions (36); are called normal modes; each is periodic, with period
2ir/cj and frequency cJ/2n. These are called the natural frequencies of the
mechanical system governed by equation (32)'.

Theorem 4. Consider two differential equations of form (32)':

Mz+Kx=0, Ny+Ly=O,

M, K, N, L positive, real n x n matrices. Suppose that

M > N and K < L.

(37)

(38)

Denote 2ir times the natural frequencies of the first system, arranged in increasing
order by c, < ... < c,,, and those of the second system by d, < ... < d,,. We claim
that

cj<dj, j=1,...,n. (39)

Proof. We introduce an intermediate differential equation

Mi + Lz = 0,

Denote its natural frequencies by f /2ir. In analogy with equation (35), the f satisfy

f2Mh = Lh,

where h is an eigenvector. In analogy with equation (35)', we can identify the
numbersf2 as the eigenvalues of

M-'/2LM-1"2.

We recall that the numbers c2 are eigenvalues of

M-1/2KM'1/2.
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Since K is assumed to be < L, it follows from Theorem 1 of Chapter 10 that also

M-'12KM-1/2 < M-1/2LM- 1/2.

Then it follows from Theorem 16 of Chapter 10 that

c < f2, j= 1,...,n. (39)'

On the other hand, in analogy with equation (35)", we can identify the reciprocals
1 /f2 as the eigenvalues of

L-1/2ML-1/2

whereas the reciprocals 1 /d2 are the eigenvalues of

L-1/2NL-1/2.

Since N is assumed, to be < M, it follows as before that

L-1/2NL-1/2 < L-'12ML-112,

so by Theorem 16 of Chapter 10

1 1

d f 2

We can combine inequalities (39)' and (39)" to deduce (39).

(39)"

Note: If either of the inequalities in (38) is strict, then all the inequalities in (39)
are strict.

The intuitive meaning of Theorem 4 is that if in a mechanical system we stiffen
the forces binding the particles to each other and reduce the mass of all the particles,
then all natural frequencies of the system increase.

We supply now the proof of the positivity of the matrix K.

Theorem 5. Suppose that the numbers k; and k, , i # j are positive. Then the
symmetric matrix K,

Ky=-k,,, i#j; K,,=k;+Eki (40)
iii

is positive.
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Proof. It suffices to show that every eigenvalue a of K is positive:

Ku = au. (41)

Normalize the eigenvector u of K so that the largest component, say u;, equals 1, and
all others are < 1. The ith component of (41) is

Ki,+EK,,u1=a.
i#i

Using the definition (40) of the entries of K, this can be rewritten as

k; +Ek1(1-u1)=a.
1#i

The left-hand side is positive; therefore, so is the right-hand side a.

For a more general result, see Appendix 7.



CHAPTER 12

Convexity

Convexity is a primitive notion, based on nothing but the bare bones of the structure
of linear spaces over the reals. Yet some of its basic results are surprisingly deep;
furthermore, these results make their appearance in an astonishingly wide variety of
topics.

X is a linear space over the reals. For any pair of vectors x, yin X, the line segment
with endpoints x and y is defined as the set of points in X of form

ax+(1-a)y, 0<a<1. (1)

Definition. A set K in X is called convex if, whenever x and y belong to K, all
points of the line segment with endpoints x, y also belong to K.

Examples of Convex Sets

(a) K = the whole space X.
(b) K = 4, the empty set.
(c) K = {x}, a single point.
(d) K = any line segment.
(e) Let l be a linear function in X; then the sets

l(x) = c, called a hyperplane, (2)

l(x) < c, called an open half-space, (3)

l(x) < c, called a closed half-space, (4)

are all convex sets.

Linear Algebm and Its Applications, Second Edition, by Peter D. Lax
Copyright Q 2007 John Wiley & Sons, Inc.
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Concrete Examples of Convex Sets

(f) X the space of all polynomials with real coefficients, K the subset of all
polynomials that are positive at every point of the interval (0, 1).

(g) X the space of real, self-adjoint matrices, K the subset of positive matrices.

EXERCISE I. Verify that these are convex sets.

Theorem 1. (a) The intersection of any collection of convex sets is convex.
(b) The sum of two convex sets is convex, where the sum of two sets K and H is

defined as the set of all sums x + y, x in K, yin H.

EXERCISE 2. Prove these propositions.

Using Theorem 1, we can build an astonishing variety of convex sets out of a few
basic ones. For instance, a triangle in the plane is the intersection of three half-planes.

Definition. A point x is called aninterior point of a set S in X if for everyy in X,
x + yt belongs to S for all sufficiently small positive t.

Definition. A convex set K in X is called open if every point in it is an interior point.

EXERCISE 3. Show that an open half-space (3) is an open convex set.

EXERCISE 4. Show that if A is an open convex set and B is convex, then A + B is
open and convex.

Definition. Let K be an open convex set that contains the vector 0. We define its
gauge function pK = p as follows: For every x in X,

p(x) = inf r, r > O and x in K.r (5)

EXERCISE 5. Let X be a Euclidean space, and let K be the open ball of radius a
centered at the origin: 11 x 11 < a.

(i) Show that K is a convex set.
(li) Show that the gauge function of K is p(x) = 11 x 11/a.

EXERCISE 6. In the (u, v) plane take K to be the quarter-plane u < 1, v < 1.
Show that the gauge function of K is

1 0 if U<0' V<0'
v if 0<v, u<0,_

p(u, v)
u if 0 < u, V<0'

max(u, v) if 0<u, 0<v.
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Theorem 2. (a) The gauge function p of an open convex set K that contains the
origin is well-defined for every x.

(b) p is positive homogeneous:

p(ax) = ap(x) for a > 0. (6)

(c) p is subadditive:

P(x + y) < P(x) + P(y) (7)

(d) p(x) < 1 iff x is in K.

Proof. Call the set of r > 0 for which x/r is in K admissible for x. To prove
(a) we have to show that for any x the set of admissible r is nonempty. This follows
from the assumption that 0 is an interior point of K.

(b) follows from the observation that if r is admissible for x and a > 0, then ar is
admissible for ax.

(c) Let s and t be positive numbers such that

P(x) < s, P(y) < t. (8)

Then by definition of p as inf, it follows that s and t are admissible for x and y;
therefore x/s and y/t belong to K. The point

x+), S X t y

s+t s+tss+tt (9)

lies on the line segment connecting x/s and y/t. By convexity, (x + y)/s + t belongs
to K. This shows that s + t is admissible for x + y; so by definition of p,

p(x + y) < s + t. (10)

Since s and t can be chosen arbitrarily close to p(x) and p(y), (c) follows.
(d) Suppose p(x) < 1; by definition there is an admissible r < 1. Since r is

admissible, x/r belongs to K. The identity x = rx/r + (1 - r)0 shows that x lies on the
line segment with endpoints 0 and x/r, so by convexity belongs to K.

Conversely, suppose x belongs to K; since x is assumed to be an interior point of K
the point x + ex belongs to K for E > 0 but small enough. This shows that
r = 1 /(1 + E) is admissible, and so by definition

P(x)<
1

1+E

This completes the proof of the theorem.
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EXERCISE 7. Let p be a positive homogeneous, subadditive function. Prove that
the set K consisting of all x for which p(x) < I is convex and open.

Theorem 2 gives an analytical description of the open convex sets. There is another,
dual description. To derive it we need the following basic, and geometrically intuitive
results.

Theorem 3. Let K be an open convex set, and let y be a point not in K. Then
there is an open half-space containing K but not y.

Proof. An open half-space is by definition a set of points satisfying inequality
1(x) < c; see (3). So we have to construct a linear function 1 and a number c such that

l(x) < c for all x in K, (11)

l(y) = c (12)

We assume that 0 lies in K; otherwise shift K. Set x = 0 in (11); we get 0 < c. We
may set c = 1. Let p be the gauge function of K; according to Theorem 2, points of K
are characterized by p(x) < 1;. It follows that (11) can be stated so:

If p(x) < 1, then I(x) < I. (11)'

This will certainly be the case if

1(x) < p(x) for all x. (13)

So Theorem 3 is a consequence of the following: there exists a linear function I
which satisfies (13) for all x and whose value at ), is 1. We show first that the two
requirements are compatible. Requiring 1(y) = 1 implies by linearity that 1(ky) = k
for all k. We show now that (13) is satisfied for all x of form ky; that is, for all k.

k = 1(ky) < p(ky),

For k positive, we can by (6) rewrite this as

k < kp(y),

(14)

(14)'

true because y does not belong to K and so by part (d) of Theorem 2, p(y) > 1. On
the other hand, inequality (14) holds for k negative; since the left-hand side is less
than 0, the right-hand side, by definition (5) of gauge function, is positive.

The remaining task is to extend I from the line through y to all of X so that (13) is
satisfied. The next theorem asserts that this can be done.
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Theorem 4 (Hahn-Banach). Let p be a real-valued positive homogeneous
subadditive function defined on a linear space X over R. Let U be a subspace of X on
which a linear function is defined, satisfying (13):

1(u) < p(u) for all u in U. (13)U

Then l can be extended to all of X so that (13) is satisfied for all x.

Proof. Proof is by induction; we show that I can be extended to a subspace V
spanned by U and any vector z not in U. That is, V consists of all vectors of form

v = u + tz, u in U. t any real number.

Since 1 is linear

1(v) = 1(u) + tl(z);

this shows that the value of 1(z) = a determines the value of l on V

1(v) = 1(u) + ta.

The task is to choose a so that (13) is satisfied: 1(v) < p(v), that is,

1(u) + to < p(u + tz)

for all u in U and all real t.
We divide (13),, by ItI. Fort > 0, using positive homogeneity of p and linearity of

l we get

l(u*) + a < p(u* + z), (14)+

where u* denotes ult. For t < 0 we obtain

1(u**) - a < p(u** - z), (14)_

where u** denotes -u/t. Clearly, (13),, holds for all u in U and all real tiff (14)+ and
(14)_ hold for all u" and u*', respectively, in U.

We rewrite (14), as

I(u**) - p(u**- z) < a < p(u* + z) - l(u*);

the number a has to be so chosen that this holds for all u* and u** in U. Clearly, this is
possible iff every number on the left is less than or equal to any number on the right,
that is, if

1(u**) - p(u** - z) < p(u" + z) -
1(u*)

(15)
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for all u*, u" in U. We can rewrite this inequality as

l(u**) + 1(u*) < p(u* + z) + p(u" - z).

By linearity, the left-hand side can be written as l(u** + u*); since (13)U holds,

1(u** + u*)
<

p(u** + u*).

Since p is subadditive,

P(u** + u*) = P(u** - z + u* + z) < p(u** - z) + P(u* + z).

This proves (15)', which shows that l can be extended to V. Repeating this n times,
we extend l to the whole space X. 0

This completes the proof of Theorem 3. 0

Note. The Hahn-Banach Theorem holds in infinite-dimensional spaces. The
proof is the same, with some added logical prestidigitation.

The following result is an easy extension of Theorem 3.

Theorem 5. Let K and H be open convex sets that are disjoint. Then there is a
hyperplane that separates them. That is, there is a linear function 1 and a constant d
such that

1(x) < d on K, 1(y) > d on H.

Proof. Define the difference K - H to consist of all differences x - y, x in K, y in
H. It is easy to verify that this is an open, convex set. Since K and H are disjoint,
K - H does not contain the origin. Then by Theorem 3, with y = 0, and therefore
c = 0, there is a linear function 1 that is negative on K - H:

1(x - y) < 0 for x in K,y in H.

We can rewrite this as

1(x) < 1(y) for all x in K, y in H.

It follows from the completeness of real numbers that there is a number d such that
for x in K, y in H,

1(x) < d < 1(y)

Since both K and H are open, the sign of equality cannot hold; this proves
Theorem 5. 0
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We show next how to use Theorem 3 to give a dual description of open convex
sets.

Definition. Let S be any set in X. We define its support function qs on the dual
X' of X as follows:

qs(l) = sup 1(x), (16)
xinS

where 1 is any linear function.

Remark. qs(l) may be oo for some 1.

EXERCISE 8. Prove that the support function qs of any set is .subadditive; that is,
it satisfies qs(m + 1) < qs(m) + qs(1) for all 1, in in X'.

EXERCISE 9. Let S and T be arbitrary sets in X. Prove that qs+T(1) _
qs(1) + qT(1)

EXERCISE 10. Show that max{gs(1),gT(1)}.

Theorem 6. Let K be an open convex set, qK its support function. Then x
belongs to K iff

1(x) < qK(l) (17)

for all I in X'.

Proof It follows from definition (16) that for every x in K 1(x) < qK(l) for
every 1; therefore the strict inequality (17) holds for all interior points x in K. To see
the converse, suppose that y is not in K. Then by Theorem 3 there is an l such that
l(x) < I for all x in K, but 1(y) = 1 Thus

l(y) = I > sup 1(x) = qK(l); (18)
xinK

this shows that y not in K fails to satisfy (17) for some 1. This proves
Theorem 6.

Definition. A convex set K in X is called closed if every open segment
ax + (1 - a)y, 0 < a < 1, that belongs to K has its endpoints x and y in K.

Examples

The whole space X is closed.
The empty set is closed.
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A set consisting of a single point is closed.
An interval of form (1) is closed.

EXERCISE 11. Show that a closed half-space as defined by (4) is a closed con-
vex set.

EXERCISE 12. Show that the closed unit ball in Euclidean space, consisting of all
points 11 x 11 < 1, is a closed convex set.

EXERCISE 13. Show that the intersection of closed convex sets is a closed
convex set.

Theorems 2, 3, and 6 have their analogue for closed convex sets.

Theorem 7. Let K be a closed, convex set, and y a point not in K. Then there is a
closed half-space that contains K but not y.

Sketch of Proof. Suppose K contains the origin. If K has no interior points, it lies
in a lower-dimensional subspace. If it has an interior point, we choose it to be the
origin. Then the gauge function PK of K can be defined as before. If x belongs to K,
we may choose in the definition (5) of PK the value r = 1; this shows that for x in K,
p(x) < I, Conversely, if pK(x) < 1, then by (5) x/r belongs to K for some r < 1.
Since 0 belongs to K, by convexity so does x. If pK(x) = 1, then for all r > l,x/r
belongs to K. Since K is closed, so does the endpoint x. This shows that K consists
of all points x which satisfy pK(x) < 1. We then proceed as in the proof of
Theorem 3. O

Theorem 7 can be rephrased as follows.

Theorem 8. Let K be a closed, convex set, qK its support function. Then x
belongs to K if

l(x) <_ qK(l) (19)

for all l in V.

EXERCISE 14. Complete the proof of Theorems 7 and 8.

Both Theorems 6 and 8 describe convex sets as intersections of half-spaces, open
and closed, respectively.

Definition. Let S be an arbitrary set in X. The closed convex hull of S is defined
as the intersection of all closed convex sets containing S.
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Theorem 9. The closed convex hull of any set S is the set of points x satisfying
1(x) < qs(1) for all 1 in X'.

EXERCISE 15. Prove Theorem 9.

Let xi,...,xm denote m points in X, and pi,...,p,, denote m nonnegative

numbers whose sum is I.

M

P1 ?0, Epj =1.
i

Then

(20)

X = pJxj (20)'

is called a convex combination of x1,. .. , xm.

EXERCISE 16. Show that if xi,... ,xm belong to a convex set, then so does any
convex combination of them.

Definition. A point of a convex set K that is not an interior point is called a
boundary point of K.

Definition. Let K be a closed, convex set. A point e of K is called an extreme
point of K if it is not the interior point of a line segment in K. That is, x is not an
extreme point of K if

x= yandzinK, y#z.y+z
2 '

EXERCISE 17. Show that an interior point of K cannot be an extreme point.

All extreme points are boundary points of K, but not all boundary points are
extreme points. Take for example, K to be a convex polygon. All edges and vertices
are boundary points, but only the vertices are extreme points.

In three-dimensional space the set of extreme points need not be a closed set.
Take K to be the convex hull of the points (0, 0, 1),(0, 0, -1) and the circle
(1 + cos 0, sin 0, 0). The extreme points of K are all the above points except (0, 0, 0).

Definition. A convex set K is called bounded if it does not contain a ray, that is,
a set of points of the form x + ty, 0 < t.

Theorem 10 (Caratheodory). Let K be a nonempty closed bounded convex set
in X, dimX = n. Then every point of K can be represented as a convex combination
of at most (n + 1) extreme points of K.
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Proof. We prove this inductively on the dimension of X. We distinguish two
cases:

(i) K has no interior points. Suppose K contains the origin, which can always be
arranged by shifting K appropriately. We claim that K does not contain n linearly
independent vectors; for if it did, the convex combination of these vectors and the
origin would also belong K; but these points constitute an n-dimensional simplex,
full of interior points. Let m be the largest number of linearly independent vectors in
K, and let x1,. .. , x , be in linearly independent vectors. Then m < n, and being
maximal, every other vector in K is a linear combination of x,, ... ,xn. This proves
that K is contained in an m-dimensional subspace of X. By the induction hypothesis.
Theorem 10 holds for K.

(ii) K has interior points. Denote by Ko the set of all interior points of K. It is easy
to show that Ko is convex and that K0 is open. We claim that K has boundary points;
for, since K is bounded, any ray issuing from any interior point of K intersects K in an
interval; since K is closed, the other endpoint is a boundary point y of K.

Let y be a boundary point of K. We apply Theorem 3 to K0 and y; clearly y does
not belong to Ko, so there is a linear functional I such that

1(y) = 1, 1(xo) < 1 for all x0 in K0. (21)

We claim that 1(x,) < 1 for all x, in K. Pick any interior point xo of K; then all points
x on the open segment bounded by xo and x, are interior points of K, and so by (21),
1(x) < 1. It follows that at the endpoint x, , l(x,) < 1.

Denote by K, the set of those points x of K for which 1(x) = 1. Being the
intersection of two closed, convex sets, K, is closed and convex; since K is bounded,
so is K1. Equation (21) shows that y belongs to K1, so K, is nonempty.

We claim that every extreme point e of K, is also an extreme point of K; for,
suppose that

z+we= 2 zandwinK.

Since e belongs to K,,

I =1(e)
=1(z) + 1(w)

2
(22)

Both z and w are in K; as we have shown before, 1(z) and 1(w) are both less than or
equal to 1. Combining this with (22), we conclude that

1(z) = 1(w) = 1.

This puts both z and w into K1. But since e is an extreme point of K1, z = w. This
proves that extreme points of K, are extreme points of K.
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Since K, lies in a hyperplane of dimension less than n, it follows from the
induction assumption that K, has a sufficient number of extreme points, that is, every
point in K, can be written as a convex combination of n extreme points of K,. Since
we have shown that extreme points of K, are extreme points of K, this proves
Theorem 10 for boundary points of K.

Let x0 be an interior point of K. We take any extreme point e of K (the previous
argument shows that there are such things) and look at the intersection of the line
through x and e with K. Being the intersection of two closed convex sets, of which
one, K, is bounded, this intersection is a closed interval. Since e is an extreme point
of K, e is one of the end points; denote the other end point by y. Clearly, y is a
boundary point of K. Since by construction x0 lies on this interval, it can be written in
the form

xo = py + (1 - p)e, 0 < p < 1. (23)

We have shown above that y can be written as a convex combination of n extreme
points of K. Setting this into (23) gives a representation of xo as the convex
combination of (n + 1) extreme points. The proof of Theorem 10 is com-
plete.

We now give an application of Caratheodory's theorem.

Definition. An n x n matrix S = (si) is called doubly stochastic if

si > 0 for all i, j,

sii = 1 for all j,

sii = 1 for all i.

(24)

Such matrices arise, as the name indicates, in probability theory.
Clearly, the doubly stochastic matrices form a bounded, closed convex set in the

space of all n x n matrices.

Example. In Exercise 8 of Chapter 5 we defined the permutation matrix P
associated with the permutation p of the integers (1, ..., n) as follows:

Pu _ 1, if j = p(i),
0, otherwise.

(25)

EXERCISE 18. Verify that every permutation matrix is a doubly stochastic
matrix.
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Theorem 11 (Denes Konig, Garrett Birkhoff). The permutation matrices are
the extreme points of the set of doubly stochastic matrices.

Proof. It follows from (i) and (ii) of (24) that no entry of a doubly stochastic
matrix can be greater than 1. Thus 0 < sy < 1.

We claim that all permutation matrices P are extreme points; for, suppose

A+BP_
2 '

A and B doubly stochastic. It follows that if an entry of P is 1, the corresponding
entries of A and B both must be equal to 1, and if an entry of P is zero, so must be the
corresponding entries of A and B. This shows that A = B = P.

Next we show the converse. We start by proving that if S is doubly stochastic and
has an entry which lies between 0 and 1:

0 < Sj' j' < 1, (26)00

S is not extreme. To see this we construct a sequence of entries, all of which lie
between 0 and 1, and which lie alternatingly on the same row or on the same column.

We choose ji so that

0 < si J, < 1. (26)01

This is possible because the sum of elements in the i0th row must be = 1, and
since (26)00 holds. Similarly, since the sum of elements in the j, st column = 1, and
since (26)01 holds, we can choose a row it so that

0<si,j,<1. (26)11

We continue in this fashion, until the same position is traversed twice. Thus a closed
chain has been constructed.
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We now define a matrix N as follows:
(a) The entries of N are zero except for those points that lie on the chain.
(b) The entries of N on the points of the chain are +I and -1, in succession.

The matrix N has the following property:
(c) The row sums and column sums of N are zero.

We now define two matrices A, B by

A=S+EN, B=S-EN.

It follows from (c) that the row sums and columns sums of A and B are both 1. By (a)
and the construction the elements of S are positive at all points where N has a
nonzero entry. It follows therefore that a can be chosen so small that both A and B
have nonnegative entries. This shows that A and B both are doubly stochastic. Since
A # B, and

A+BS-

2 '

it follows that S is not an extreme point.
It follows that extreme points of the set of doubly stochastic matrices have entries

either 0 or 1. It follows from (24) that each row and each column has exactly one 1. It
is easy to check that such a matrix is a permutation matrix. This completes the proof
of the converse.

Applying Theorem 10 in the situation described in Theorem U, we conclude:
Every doubly stochastic matrix can be written as a convex combination of
permutation matrices:

S=Ec(P)P, c(P)>0, >c(P)=1.

EXERCISE 19. Show that, except for two dimensions, the representation of
doubly stochastic matrices as convex combinations of permutation matrices is not
unique.

Caratheodory's theorem has many applications in analysis. Its infinite-
dimensional version is the Krein-Milman Theorem.

The last item in the chapter is a kind of a dual of Caratheodory's theorem.

Theorem 12 (Helly). Let X be a linear space of dimension n over the reals. Let
{K1 .... , KN} be a collection of N convex sets in X. Suppose that every subcollection
of n + I sets K has a nonempty intersection. Then all K in the whole collection have
a common point.
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Proof (Radon). We argue by induction on N, the number of sets, starting with the
trivial situation N = n + 1. Suppose that N > n + I and that the assertion is true for
N - l sets. It follows that if we omit any one of the sets, say Ki, the rest have a point
xi in common:

xi E Kj, j # i. (27)

We claim that there are numbers a,. .. , aN, not all zero, such that

and

N

Ea,=0.

(28)

(28)'

These represent n + 1 equations for the N unknowns. According to Corollary A'
(concrete version) of Theorem I of Chapter 3, a homogeneous system of linear
equations has a nontrivial (i.e., not all unknowns are equal to 0) solution if the
number of equations is less than the number of unknowns. Since in our case n + I is
less than N, (28) and (28)' have a nontrivial solution.

It follows from (28)' that not all ai can be of the same sign; there must be some
positive ones and some negative ones. Let us renumber them so that ai...... a,, are
positive, the rest nonpositive.

We define a by

Paai. (29)

Note that it follows from (28)' that

N

a= - Eai. (29)'
P+1

We define y by

1 P

)' = Q E aix,. (30)

Note that it follows from (28) and (30) that

1

N- aixi (30)'
a P+i
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Each of the points xi, i = 1, ... , p belongs to each of the sets K1, j > p. It follows
from (29) that (30) represents y as a convex combination of xj, ... , xp. Since ICJ is
convex, it follows that y belongs to K1 for j > p.

On the other hand, each xi, i = p + I,.. . , N belongs to each K j < p. It follows
from (29)' that (30)' represents y as a convex combination of xi,+i,... ,xv. Since KK
is convex, it follows that y belongs to KJ for j < p. This concludes the proof of
Helly's theorem. 0

Remark. Helly's theorem is nontrivial even in the one-dimensional case. Here
each Kj is an interval, and the hypothesis that every Kj and K; intersects implies that
the lower endpoint a; of any K; is less than or equal to the upper endpoint bj of any
other Kj. The point in common to all is then sup ai or inf b,, or anything in between.

Remark. In this chapter we have defined the notions of open convex set, closed
convex set, and bounded convex set purely in terms of the linear structure of the
space containing the convex set. Of course the notions open, closed, bounded have a
usual topological meaning in terms of the Euclidean distance. It is easy to see that if
a convex set is open, closed, or bounded in the topological sense, then it is open,
closed, or bounded in the linear sense used in this chapter.

EXERCISE 20. Show that if a convex set in a finite-dimensional Euclidean space
is open, or closed, or bounded in the linear sense defined above, then it is open, or
closed, or bounded in the topological sense, and conversely.



CHAPTER 13

The Duality Theorem

Let X be a linear space over the reals, dim X = n. Its dual X' consists of all linear
functions on X. If X is represented by column vectors x of n components x1,.. . , xn,

then elements of X' are traditionally represented as row vectors with n components
t , ... , in. The value of at x is

Ix1 + ... + Snxn. (1)

If we regard as a 1 x n matrix and regard x as an n x 1 matrix, (1) is their matrix
product lx.

Let Y be a subspace of X; in Chapter 2 we have defined the annihilator Y1 of Yas
the set of all linear functions t; that vanish on Y, that is, satisfy

ty = 0 for all y in Y. (2)

According to Theorem 3 of Chapter 2, the dual of X' is X itself, and according to
Theorem 5 there, the annihilator of Y1 is Y itself. In words: if tx = O for all in Y1,
then x belongs to Y.

Suppose Yis defined as the linear space spanned by m given vectors yi,... ,yn in
X. That is, Y consists of all vectors y of the form

(3)

Clearly, l; belongs to Y1 iff

Yj = 0, j = 1,..., M. (4)

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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So for the space Ydefined by (3), the duality criterion stated above can be formulated
as follows: a vector y can be written as a linear combination (3) of in given vectors yj
iff every that satisfies (4) also satisfies t y = 0.

We are asking now for a criterion that a vector y be the linear combination of m
given vectors yj with nonnegative coefficients:

y = > PjYi, Pi?0. (5)

Theorem 1 (Farkas-Minkowski). A vector y can be written as a linear
combination of given vectors yj with nonnegative coefficients as in (5) iff every that
satisfies

yj ? 0, j= (6)

also satisfies

ty ? 0.
(6)'

Proof. The necessity of condition (6)' is evident upon multiplying (5) on the left
by i. To show the sufficiency we consider the set K of all points y of form (5). Clearly,
this is a convex set; we claim it is closed. To see this we first note that any vector y
which may be represented in form (5) may be represented so in various ways.
Among all these representations there is by local compactness one, or several, for
which E pj is as small as possible. We call such a representation of y a minimal
representation.

Now let {z,,} be a sequence of points of K converging to the limit z in the
Euclidean norm. Represent each z minimally:

Z. = E pn.jyj. (5)'

We claim that E p,,, j = P is a bounded sequence. For suppose on the contrary that
P -> oo. Since the sequence z is convergent, it is bounded; therefore tends to
zero:

Zn _ Pn.iyJ 0.

Pn P.

The numbers pn, j/P are nonnegative and their sum is 1. Therefore by compactness
we can select a subsequence for which they converge to limits:

Pn.j
' 9j-

P11
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These limits satisfy > qj = 1. It follows from (5)" that

E gjyi = 0.

Subtract this from (5)':

For each j for which qj > 0, pn.j oo; therefore for n large enough, this is a positive
representation of z,,, showing that (5)' is not a minimal representation. This
contradiction shows that the sequence Pn = E p,, j is bounded. But then by local
compactness we can select a subsequence for which p,, ,j -> pj for all j. Let n tend to
oc in (5)'; we obtain

z = limz = >P,)'j

Thus the limit z can be represented in the form (5); this proves that the set K of all
points of form (5) is closed in the Euclidean norm.

We note that the origin belongs to K.
Let y be a vector that does not belong to K. Since K is closed and convex,

according to the hyperplane separation Theorem 7 of Chapter 12 there is a closed
halfspace

(7)

that contains K but not y:

ny < c. (8)

Since 0 belongs to K, it follows from (7) that 0 > c. Combining this with (8), we get

ny<0.

Since kyj belongs to K for any positive constant k, it follows from (7) that

kr1Yj > c, j = l.... , in

for all k > 0; this is the case only if

l1)y>0, j=1,...,m.

(9)

(10)

Thus if y is not of form (5), there is an q that according to (10) satisfies (6) but
according to (9) violates (6)'. This completes the proof of Theorem 1. 0
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EXERCISE I. Show that K defined by (5) is a convex set.

We reformulate Theorem 1 in matrix language by defining the n x m matrix Y as

y = (yI) ...,ym),

that is, the matrix whose columns are y,. We denote the column vector formed by
Ph,...,Pm by P:

We shall call a vector, column or row, nonnegative, denoted as > 0, if all its
components are nonnegative. The inequality x > z means x - z >_ 0.

EXERCISE 2. Show that if x > z and > 0, then i x > z.

Theorem 1. Given an n x m matrix Y, a vector y with n components can be
written in the form

y=YP, P>-0 (11)

t th t ti fiif every row vec a sa s esor

Y > 0 (12)

also satisfies

y>_0. (12)'

For the proof, we merely observe that (11) is the same as (5), (12) the same as (6),
and (12)' the same as (6)'.

The following is a useful extension.

Theorem 2. Given an n x m matrix Y and a column vector
components, the inequality

y with n

y>YP, P>0 (13)

can be satisfied if every that satisfies

4Y>0, 4>0 (14)
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also satisfies

by>_ 0. (15)

Proof. To prove necessity, multiply (13) by on the left and use (14) to deduce
(15). Conversely by definition of > 0 for vectors, (13) means that there is a column
vector z with n components such that

y=Yp+z, z>_0, p>0. (13)'

We can rewrite (13)' by introducing the n x n identity matrix I, the augmented

matrix (Y, 1) and the augmented vector (p ). In terms of these (13)' can be written as
z

y=(Y,I)(P), (P) >0
(13)"

and (14) can be written as

(Y,I) > 0. (14)'

We now apply Theorem 1' to the augmented matrix and vector to deduce that if
(15) is satisfied whenever (14)' is, then (13)" has a solution, as asserted in
Theorem 2. O

Theorem 3 (Duality Theorem). Let Y be a given n x m matrix, y a given
column vector with n components, and y a given row vector with m components.

We define two quantities, S and s, as follows:

Definition

S = sup yp
P

for all column vectors p with m components satisfying

(16)

y>YP, P>_0.

We call the set of p satisfying (17) admissible for the sup problem (16).

Definition

(17)

s = inf:y (18)



THE DUALITY THEOREM 207

for all row vectors with n components satisfying the admissibility conditions

y :5 4Y, > 0. (19)

We call the set of i satisfying (19) admissible for the inf problem (18).

Assertion. Suppose that there are admissible vectors p and ; then S and s are
finite, and

S=s.

Proof Let p and s; be admissible vectors. Multiply (17) by i on the left, (19) by p
on the right. Using Exercise 2 we conclude that

y?.Yp?Yp

This shows that any yp is bounded from above by every y; therefore

s > S. (20)

To show that equality actually holds, it suffices to display a single p admissible for
the sup problem (16) for which

yp>s. (21)

To accomplish this, we combine (17) and (21) into a single inequality by augmenting
the matrix Y with an extra row -y, and the vector ), with an extra component -s:

C s J ? ( y)P, p > 0. (22)

If this inequality has no solution, then according to Theorem 2 there is a row vector
and a scalar a such that

(4,a)(YY) > 0, (,a) ? 0,

but

(23)

(, a) I ys < 0. (24)

We claim that a > 0; for, if a = 0, then (23) implies that

Y>0, >0, (23)'
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and (24) that

iy < 0. (24)'

According to the "only if" part of Theorem 2 this shows that (13), the same as (17),
cannot be satisfied; this means that there is no admissible p, contrary to assumption.

Having shown that a is necessarily positive, we may, because of the homogeneity
of (23) and (24), take a = 1. Writing out these inequalities gives

Y >_ Y, ? 0 (25)

and

ty < S. (26)

Inequality (25), the same as (19), shows that is admissible; (26) shows that s is
not the infimum (18), a contradiction we got into by denying that we can satisfy (21).
Therefore (21) can be satisfied; this implies that equality holds in (20). This proves
thatS=s.

EXERCISE 3. Show that the sup and inf in Theorem 3 is a maximum and
minimum. [Hint: The sign of equality holds in (21).]

We give now an application of the duality theorem in economics.
We are keeping track of n different kinds of food (milk, meat, fruit, bread, etc.)

and m different kinds of nutrients (protein, fat, carbohydrates, vitamins, etc.). We
denote

yU = number of units of the jth nutrient present in one unit of the ith food item.
yj = minimum daily requirement of the jth nutrient.
yi = price of one unit of the ith food item.

Note that all these quantities are nonnegative.
Suppose our daily food purchase consists of ii units of the ith food item. We insist

on satisfying all the daily minimum requirements:

iyij >_ Y', j = 1, ... , m. (27)

This inequality can be satisfied, provided that each nutrient is present in at least one
of the foods.

The total cost of the purchase is

'iyi (28)
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A natural question is, What is the minimal cost of food that satisfies the daily
minimum requirements? Clearly, this is the minimum of (28) subject to (27) and
l; > 0, since we cannot purchase negative amounts. If we identify the column vector
formed by the yi with y, the row vector formed by the yi with y, and the matrix yii
with Y, the quantity (28) to be minimized is the same as (18), and (27) is the same as
(19). Thus the infimum s in the duality theorem can in this model be identified with
minimum cost.

To arrive at an interpretation of the supremum S we denote by {pi} a possible set
of values for the nutrients that is consistent with the prices. That is, we require that

)'iyiipir i = 1,...,n. (29)

The value of the minimum daily requirement is

T, yipi' (30)

Since clearly pi are nonnegative, the restriction (29) is the same as (17). The quantity
(30) is the same as that maximized in (16). Thus the quantity Sin the duality theorem
is the largest possible value of the total daily requirement, consistent with the prices.

A second application comes from game theory. We consider two-person,
deterministic, zero-sum games. Such a game can (by definition) always be presented
as a matrix game, defined as follows:

Ann x m matrix Y, called the payoff matrix, is given. The game consists of player
C picking one of the columns and player R picking one of the rows; neither player
knows what the other has picked but both are familiar with the payoff matrix. If C
chooses column j and R chooses row i, then the outcome of the game is the payment
of the amount Yii by player C to player R. If Yii is a negative number, then R pays C.

We think of this game as being played repeatedly many times. Furthermore, the
players do not employ the same strategy each time, that is, do not pick the same row,
respectively, column, each time, but employ a so-called mixed strategy which
consists of picking rows, respectively columns, at random but according to a set of
frequencies which each player is free to choose. That is, player C will choose the jth
column with frequency xi, where x is a probability vector, that is,

xi>0, > x1
=1. (31)

i
Player R will choose the ith row with frequency rii,

lii J 0, (31)'

Since the choices are made at random, the choices of C and R are independent of
each other. It follows that the frequency with which C chooses column j and R
chooses row i in the same game is the product nixi.
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Since the payoff of C to R is Y;1, the average payoff over a long time is

E rl;xjY+1.
i.i

In vector-matrix notation that is

rjYx. (32)

If C has picked his mix x of strategies, then by observing over a long time R can
determine the relative frequencies that C is using, and therefore will choose his own
mix n of strategies so that he maximizes his gain:

max rjYx. (33)
I?

Suppose C is a conservative player, that is, C anticipates that R will adjust his mix so
as to gain the maximum amount (33). Since R's gain is Cs loss, C chooses his mix x
to minimize his loss-that is, so that (33) is a minimum:

min max riYx,
x q

(34)

x and q probability vectors.
If, on the other hand, we suppose that R is the conservative player, R will assume

that C will guess R's mix n first and therefore C will choose x so that C's loss is
minimized:

min rlYx.
X

R therefore picks his mix q so that the outcome (33)' is as large as possible:

max min rlYx.
1I X

(33)'

(34)'

Theorem 4 (Minmax Theorem). The minmax (34) and the maxmin (34)',
where n and x are required to be probability vectors, are equal:

min max rjYx = max min r)Yx.
x 11 q X

The quantity (35) is called the value of the matrix game Y.

(35)

Proof. Denote by E then x m matrix of all Is. For any pair of probability vectors
i and x, rl Ex = 1. Therefore if we replace Y by Y + kE, we merely add k to both (34)
and (34)'. For k large enough all entries of Y + kE are positive; so we may consider
only matrices Y with all positive entries.
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We shall apply the duality theorem with

Y = (1,...,1)

Since y is positive, the maximum problem

211

(36)

S = max yp, y > Yp,p > 0 (37)
P

has positive admissible vectors p. Since the entries of y are positive, S > 0. We
denote by po a vector where the maximum is achieved.

Since Y > 0, the minimum problem

s=minty, tY?Y,4?0,
4

(37)'

has admissible vectors . We denote by to a vector where the minimum is reached.
According to (36), all components of y are 1; therefore ypo is the sum of the

components of po. Since ypo = S,

P0_xo _
S

(38)

is a probability vector. Using an analogous argument, we deduce that

40 'no =
s

(38)

is a probability vector.
We claim that x0 and 'm are solutions of the minmax and maxmin problems (34)

and (34)', respectively. To see this, set po into the second part of (37), and divide by
S. Using the definition xo = po/S, we get

y > Y.ro.S- (39)

Multiply this on the left with any probability vector n. Since according to (36) all
components of y are 1, ny = 1, and so

S > rlYxo. (40)

It follows from this that

1 > max r1Yxo,S- n
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from which it follows that

I
> min max riYx.

S x q

On the other hand, we deduce from (40) that for all q,

I
> min iYx,S- x

from which it follows that

I > max min qYx.S- i x

(41)

(42)

Similarly we set a for into the second part of (37)', divide by s, and multiply by
any probability vector x. By definition (38)', rin = 0/s; since according to (36) all
components of y are 1, yx = 1. So we get

r10Yx > 1 .

S

From this we deduce that for any probability vector x,

I
max rlYx > -I

n S

from which it follows that

1

min max rjYx > -.
x n S

On the other hand, it follows from (40)' that

min g0Yx > 1
X S

from which it follows that

max min ,Yx > I .

q x S

Since by the duality theorem S = s, (41) and (41)' together show that

(40)'

(41)'

(42)'

min maxiYx=
1

=
1-,

x ,i S S
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while (42) and (42)' show that

max min qYx =
l l

S S

This proves the minmax theorem. El
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The minmax theorem is due to von Neumann. It has important implications for
economic theory.



CHAPTER 14

Nonmed Linear Spaces

In Chapter 12, Theorem 2, we saw that every open, convex set K in a linear space X
over R containing the origin can be described as the set of vectors x satisfying
p(x) < 1, where p, the gauge function of K, is a subadditive, positive homogeneous
function, positive except at the origin. Here we consider such functions with one
additional property: evenness, that is, p(-x) = p(x). Such a function is called a
norm, and is denoted by the symbol jxI, the same as absolute value. We list now the
properties of a norm:

(i) Positivity: IxI > 0 forx 0 0, 101 = 0.
(ii) Subadditivity: Ix+A 5 IxI + 1y1. (1)

(ill) Homogeneity: for any real numberk, jkxj = jkjjxj.

A linear space with a norm is called a normed linear space. Except for Theorem
4, in this chapter X denotes a finite-dimensional normed linear space.

Definition. The set of points x in X satisfying I x I < 1 is called the open unit
ball around the origin; the set lxi < I is called the closed unit ball.

EXERCISE I. (a) Show that the open and closed unit balls are convex.
(b) Show that the open and closed unit balls are symmetric with respect to the

origin, that is, if x belongs to the unit ball, so does -x.

Definition. The distance of two vectors x and y in X is defined as

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
Copyright Q 2007 John Wiley & Sons, Inc.
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EXERCISE 2. Prove the triangle inequality, that is, for all x, y, z in X,

Ix - zl <- Ix - yl+ly - ZI. (2)

Definition. Given a point y and a positive number r, the set of x satisfying
ix - yl < r is called the open ball of radius r, center y; it is denoted B(),, r).

Examples

X=68",

(a) Define

lxl,, = max jail. (3)i
Properties (i) and (iii) are obvious; property (ii) is easy to show.

(b) Define Ix12 as the Euclidean norm:

IXl2 = (lajl2) I/2
(4)

Properties (i) and (iii) are obvious; property (ii) was shown in Theorem 3 of
Chapter 7.

(c) Define

IxII = E jail- (5)

EXERCISE 3. Prove that Ixl I defined by (5) has all three properties (1) of a norm.
The next example includes the first three as special cases:

(d) p any real number, I < p; we define

I/p

IxII, = (E lailp) (6)

Theorem 1. Ixlt, defined by (6) is a norm, that is, it has properties (1).

Proof. Properties (i) and (iii) are obvious. To prove (ii), we need the
following: 0

Holder's Inequality. Let p and q be positive numbers that satisfy

(7)
p q
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Let (a,, ..-,a.) =x and (bl, .... y be two vectors; then

xy <_
IxIp IYIq,

where the product xy is defined as

xy = E ajbj;

(8)

(9)

IxIp, IYIq are defined by (6). Equality in (8) holds iff Iajlp and Ibjl' are proportional
and sgn aj = sgn bj, j = l , ... , n.

EXERCISE 4. Prove or look up a proof of Holder's inequality.

Note. For p = q = 2, Holder's inequality is the Schwarz inequality (see Theorem 1,
Chapter 7).

EXERCISE 5. Prove that

where Ixlx is defined by (3).

Ixlx = slim Ixl p,

Corollary. For any vector x

IxIp=maxxy (10)

Proof. Inequality (8) shows that when lylq = 1, xy cannot exceed IxIp. Therefore
to prove (10) we have to exhibit a single vector yo, IYoiq = 1, for which Ayo = lxlp.
Here it is:

Yo =

Clearly

and

z= (c1.... cj = sgnajlajlp/q (11)

I

IYoI =
zlg

q lxlplq'
P

Iz1qIcjlqIajlp=IxIp.
Combining (12) and (12)'

IxIP/q

IYOI-q IxIP/q - 1.

P

z
IxIplq '

P

(12)

(12)'

(13)
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From (11)
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xZ
_yIajllajlplv_EIajI1+PIv

rrly (13)'x3o =
IXIP/v

= IxiPIv - Ix1PIq = IXIP = IxIP,
P P P

where we have used (7) to set 1 + p/q = p. Formulas (13) and (13)' complete the
proof of the corollary.

To prove subadditivity for IxIP we use the corollary. Let x and z be any two
vectors; then by (10),

Ix + zIP = max (x + z)y < max xy + max zy = IxIP + IzIP
"1w=1 IYIq=1

This proves that the lP norm is subadditive.

We return now to arbitrary norms.

Definition. Two norms in a finite-dimensional linear space X, IXI I and IxI,, are
called equivalent if there is a constant c such that for all x in X,

1X11 < CIXI2, IXI2 <_ cIXI I (14)

Theorem 2. In a finite-dimensional linear space, all norms are equivalent; that
is, any two satisfy (14) with some c, depending on the pair of norms.

Proof. Any finite-dimensional linear space X over IIB is isomorphic to R",
n = dim X; so we may take X to be R". In Chapter 7 we introduced the Euclidean
norm:

1/2

=(al,...,a,,). (15)IIXII= (EaJ) x

Denote by ej the unit vectors in 118":

ej = (0,...,1,0,...,0), j= 1,...,n.

Then x = (aI,...,a") can be written as

x = E ajej. (16)

Let IXI be any other norm in I. Using subadditivity and homogeneity repeatedly
we get

IXI < E Iajllejj. (16)'
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Applying the Schwarz inequality to (16)' (see Theorem 1, Chapter 7), we get, using
(15),

Ixl s:

(Ieji2)1 za,)i z-cllxll,
(17)

where c abbreviates (E le 12) 112. This gives one half of inequalities (14).
To get the other half, we show first that IxI is a continuous function with respect to

the Euclidean distance. By subadditivity,

IxI < Ix - yl + lyl, lyl <- Ix - yl + IxI,

from which we deduce that

Ilxl - 1Y11 :5 Ix -YI.

Using inequality (17), we get

IIXI - IYII<- cllx-yll,

which shows that IxI is a continuous function in the Euclidean norm.
It was shown in Chapter 7 that the unit sphere Sin a finite-dimensional Euclidean

space, 11 x 11= 1, is a compact set. Therefore the continuous function IxI achieves its
minimum on S. Since by (1), IxI is positive at every point of S, it follows that the
minimum m is positive. Thus we conclude that

0<m<Ix1 when 11x11=1.

Since both IxI and II x II are homogeneous functions, we conclude that

mllx11<_IxI

(18)

(19)

for all x in W. This proves the second half of the inequalities (14), and proves that
any norm in R" is equivalent in the sense of (14) with the Euclidean norm.

The notion of equivalence is transitive; if lxl, and 1x12 are both equivalent to the
Euclidean norm, then they are equivalent to each other. This completes the proof of
Theorem 2.

Definition. A sequence {x"} in a normed linear space is called convergent to
the limit x, denoted as lim x" = x if lim lx" - xl = 0.

Obviously, the notion of convergence of sequences is the same with respect to two
equivalent norms; so by Theorem 2, it is the same for any two norms.

Definition. A set S in a normed linear space is called closed if it contains the
limits of all convergent sequences {x" }, x" in S.
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ExERCISE 6. Prove that every subspace of a finite-dimensional normed linear
space is closed.

Definition. A set S in a nonmed linear space is called bounded if it is contained
in some ball, that is, if there is an R such that for all points z in S, IzI _< R. Clearly, if a
set is bounded in the sense of one norm, it is bounded in the sense of any equivalent
norm, and so by Theorem 2 for all norms.

Definition. A sequence of vectors {xk} in a normed linear space is called a
Cauchy sequence if Ixk - xj I tends to zero as k and j tend to infinity.

Theorem 3. (1) In a finite-dimensional normed linear space X, every Cauchy
sequence converges to a limit.

(ii) Every bounded infinite sequence in a finite-dimensional normed linear
space X has a convergent subsequence.

Property (i) of X is called completeness, and property (ii) is called local
compactness.

Proof. (i) Introduce a Euclidean structure in X. According to Theorem 2, the
Euclidean norm and the norm in X are equivalent. Therefore a Cauchy sequence in
the norm of X is also a Cauchy sequence in the Euclidean norm. According to
Theorem 16 in Chapter 7, a Cauchy sequence in a finite-dimensional Euclidean
space converges. But then the sequence also converges in the norm of X.

(ii) A sequence IX,} that is bounded in the norm of X is also bounded in the
Euclidean norm imposed on X. According to Theorem 16 of Chapter 7, it contains a
subsequence that converges in the Euclidean norm. But then that subsequence also
converges in the norm of X.

Just as in Euclidean space, see Theorem 17 in Chapter 7, part (ii) of Theorem 3
has a converse:

Theorem 4. Let X be a normed linear space that is locally compact-that is, in
which every bounded sequence has a convergent subsequence. Then X is finite-
dimensional.

Proof. We need the following result.

Lemma 5. Let Y be a finite-dimensional subspace of a normed linear space X.
Let x be a vector in X that does not belong to Y. Then

d = inf Ix - yj
y in Y

is positive.
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Proof. Suppose not; then there would be a sequence of vectors {y,, } in Y such that

0.

In words, y,, tends to x. It follows that {yn} is a Cauchy sequence; according to part
(i) of Theorem 3, y converges to a limit in Y. This would show that the limit x of
{y,, } belongs to Y, contrary to the choice of x.

Suppose X infinite-dimensional; we shall construct a sequence {yk} in X with the
following properties:

2, lyk - ytI ? 1 fork 1. (20)

Clearly, such a sequence is bounded and, equally clearly, contains no convergent
subsequence.

We shall construct the sequence recursively. Suppose have been
chosen; denote by Y the space spanned by them. Since X is infinite-dimensional,
there is an x in X that does not belong to Y. We appeal now to Lemma 5,

d = inf Ix - yI > 0.
vin Y

By definition of infimum, there is a vector yo in Y which satisfies

Ix - yol < 2d.

Define

Yn+i =x dyo
(21)

It follows from the inequality above that I < 2. For any y in Y, yo + dy belongs
to Y. Therefore by definition of infimum,

ix - yo - dye>d.

Dividing this by d and using the definition of y,,+,, we get

Iyn+I - yI > 1.

Since every yt, I = 1, ... , n, belongs to Y,

Iyn+i - y,I > 1 forl= I,...,n..

This completes the recursive construction of the sequence
(20).

{yk} with property

Theorem 4 is due to Frederic Riesz.
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EXERCISE 7. Show that the infimum in Lemma 5 is a minimum.
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We have seen in Theorem 5 of Chapter 7 that every linear function I in a
Euclidean space can be written in the form of a scalar product I(x) = (x, y).
Therefore by the Schwarz inequality, Theorem I of Chapter 7,

II(x)I :5 IIx1IIIY II.

Combining this with (19), we deduce that

II(x)1 S clxl, c = II i II

We can restate this as Theorem 6.

Theorem 6. Let X be a finite-dimensional normed linear space, and let I be a
linear function defined on X. Then there is a constant c such that

II(x)1 G clxl (22)

for all x in X.

Corollary 6. Every linear function on a finite-dimensional normed linear space
is continuous.

Proof. Using the linearity of l and inequality (22), we deduce that

II(x) -1(y)I = II(x - y)I <- cIx - yI. O

Definition. Denote by co the infimum of all numbers c for which (22) holds for
all x. Clearly, (22) holds for c = co, and co is the smallest number c for which (22)
holds; co is called the norm of the linear function 1, denoted as III'.

The norm of l can also be characterized as

I IIII, = sup II()I (23)

It follows from (23) that for all x and all 1,

II(x)I <_ III'1x4. (24)

Theorem 7. X is a finite-dimensional normed linear space.

(i) Given a linear function I defined on X, there is an x in X, x # 0, for which
equality holds in (24).

(ii) Given a vector x in X, there is a linear function l defined on X, l # 0, for
which equality holds in (24).
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Proof. (i) We shall show that the supremum definition (23) of Ill' is a maximum.
We note that the ratio I l (x) I /IxI doesn't change if we replace x by any multiple of x.
Therefore it suffices to take the supremum (23) over the unit sphere IxI = 1.

According to Corollary 6', l(x) is a continuous function; then so is I1(x) I. Since the
space X is locally compact, the continuous function I1(x) I takes on its maximum
value at some point x of the unit sphere. At this point, equality holds in (24).

(ii) If x = 0, any 1 will do.
For x 9 0, we define 1(x) = IxI; since 1 is linear, we set for any scalar k

1(kx) = klxl. (25)

We appeal now to the Hahn-Banach Theorem, Theorem 4 in Chapter 12. We choose
the positive homogeneous, subadditive function p(x) to be IxI, and the subspace U on
which 1 is defined consists of all multiples of x. It follows from (25) that for all u in
U, 1(u) < Jul. According to Hahn-Banach, I can be extended to all y of X so that
1(y) < IyI for all y. Setting -y for y, we deduce that I1(y)I < IyI as well. So by
definition (23) of the norm of 1, it follows that Ill' < 1. Since 1(x) = IxI, it follows
that Ill' = 1, so equality holds in (24).

In Chapter 2 we have defined the dual of a finite-dimensional linear space X as
the set of all linear functions I defined on X. These functions form a linear space,
denoted as X'. We have shown in Chapter 2 that the dual of X' can be identified with
X itself: X" = X, as follows. For each x in X we define a linear function f over X' by
setting

Al) = 1(x). (26)

We have shown in Chapter 2 that these are all the linear functions on X.
When X is a finite-dimensional nonmed linear space, there is an induced norm 111'

in X', defined by formula (23). This, in turn, induces a norm in the dual X" of V.

Theorem 8. The norm induced in X" by the induced norm in X' is the same as
the original norm in X.

Proof. The norm of a linear function of on X' is, according to formula (23),

IfI" = sup If(1)I
r,'o 111'

The linear functions f on X' are of the form (26); setting this into (27) gives

VI " = sup
I1(x) I

r,&oIlI

(27)

(28)
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According to (24), Il(x)i/i1I' < lxi for all 134 0. According to part (ii) of Theorem 7,
equality holds for some 1. This proves that Ifs" = lxI.

EXERCISE 8. Show that Ill' defined by (23) satisfies all postulates for a norm
listed in (1).

Note. The dual of an infinite-dimensional normed linear space X consists of all
linear functions on X that are bounded in the sense of (22). The induced norm on X' is
defined by (24). Theorem 7 holds in infinite-dimensional spaces.

The dual of X' is defined analogously. For each x in X, we can define a linear
function f by formula (25);f is bounded and its bound equals Jxj. So f lies in X"; but
for many spaces X that are used in analysis, it is no longer true that all elements f in
X" are of the form (26).

Part (ii) of Theorem 7 can be stated as follows:

jxl = max 1(x) (29)
III =[

for every vector x.
The following is an interesting generalization of (29).

Theorem 9. Let Z be a subspace of X, y any vector in X. The distance d(y, Z) of
y to Z is defined to be

d(y, z) = in Z Iy - zl. (30)

Then

d(y, Z) = max 1(y) (31)

over all t: in X' satisfying

111,:51, 1(z) = 0 for z in Z. (32)

Proof. By definition of distance, for any e > 0 there is a zo in Z such that

1y-zol <d(y,Z)+e. (33)

For any I satisfying (32) we get, using (33) that

1(y) = l(y) - I(zo) = l(y - zo) <- Illly - zol < d(y, Z) +

Since e > 0 is arbitrary, this shows that for all I satisfying (32).

1(y) <_ d(y, z). (34)
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To show the opposite inequality we shall exhibit a linear function in satisfying (32),
such that m(y) = d(y,z). Since for y in Z the result is trivial, we assume that the
vector y does not belong to Z. We define the linear subspace U to consist of all
vectors u of the form

u=Z+ky, z in Z, k any real number. (35)

We define the linear function m(u) in U by

m(u) = kd(),, Z). (36)

Obviously, m is zero for u in Z; it follows from (35), (36), and the definition (30) of d
that

m(u) < Jul for a in U. (37)

By Hahn-Banach we can extend m to all of X so that (37) holds for all x; then

lmi' < 1. (37)'

Clearly, in satisfies (32); on the other hand, we see by combining (35) and (36) that

m(y) = d (y, Z)

Since we have seen in (34) that 1(y) < d(y, Z) for all I satisfying (32), this completes
the proof of Theorem 9.

In Chapter 1 we have introduced the notion of the quotient of a linear space X by
one of its subspaces Z. We recall the definition: two vectors x, and x2 in X are
congruent mod Z,

x, =-x2 mod Z

if x, - x2 belongs to Z. We saw that this is an equivalence relation, and therefore we
can partition the vectors in X into congruence classes {}. The set of congruence
classes { } is denoted as X/Z and can be made into a linear space; all this is described
in Chapter 1. We note that the subspace Z is one of the congruence classes, which
serves as the zero element of the quotient space.

Suppose X is a normed linear space; we shall show that then there is a natural way
of making X/Z into a normed linear space, by defining the following norm for the
congruence classes:

If = inf lxJ, x E {}. (38)
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Theorem 10. Definition (38) is a norm, that is, has all three properties (1).

Proof. Every member x of a given congruence class () can be described as
x = xo - z, xo some vector in { }, z any vector in Z. We claim that property (i),
positivity, holds: for {} # 0,

IN > 0. (38)'

Suppose on the contrary that I { } I = 0. In view of definition (38) this means that there
is a sequence x1 in { } such that

lim IX.iI = 0. (39)

Since all xj belong to the same class, they all can be written as

Xi=XO - zi, zj in Z.

Setting this into (39) we get

limIxo-z;I=0.

Since by Theorem 3 every linear subspace Z is closed, it follows that xo belongs to Z.
But then every point xo - z in { } belongs to Z, and in fact J} = Z. But we saw earlier
that {} = Z is the zero element of XIZ. Since we have stipulated {} # 0, we have a
contradiction, that we got into by assuming I I) I = 0.

Homogeneity is fairly obvious; we turn now to subaddivity: by definition (38) we
can, given any E > 0, choose xo and {x}and yo in {y} so that

Ix01 < I{x}I + E, Iyo1 < I{y}I + E. (40)

Addition of classes is defined so that xo + yo belongs to {x} + {y}. Therefore by
definition (38), subadditivity of I I and (39, 40),

I {x} + {y} I < Ixo + yol <- IxoI + 1yol < I {x} I + I {y} I + 2E.

Since f is an arbitrary positive number,

I{x} + {y}I < I{x}I + I{y}I

follows. This completes the proof of Theorem 10.

We conclude this chapter by remarking that a norm in a linear space over the
complex numbers is defined entirely analogously, by the three properties (1). The
theorems proved in the real case extend to the complex. To prove Theorems 7 and 9
in the complex case, we need a complex version of the Hahn-Banach theorem, due
to Bohnenblust-Szobcyk and Sukhomlinov. Here it is:
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Theorem 11. X is a linear space over C, and p is a real-valued function defined
on X with the following properties:

(i) p is absolute homogeneous; that is, it satisfies

p(ax) = Ialp(x)

for all complex numbers a and all x in X.
(ii) p is subadditive:

p(x + Y) < p(x) + p(Y)

Let U be a subspace of X, and I is a linear functional defined on U that satisfies

Il(u)I 5 P(u) (41)

for all u in U.
Then I can be extended as a linear functional to the whole space so that

Il(x)I < p(x) (41)'

for all x in X.

Proof. The complex linear space X can also be regarded as a linear space over 08.
Any linear function on complex X can be split into its real and imaginary part:

1(u) = 11(u) + il2(u),

where 11 and /2 are real-valued, and linear on real U. li and 12 are related by

h (iu) = -12(u).

Conversely, if 11 is a real-valued linear function over real X,

1(x) = 11W - ill (ix) (42)

is linear over complex X.
We turn now to the task of extending 1. It follows from (41) that l1, the real part of

1, satisfies on U the inequality

11(u) < p(u). (43)

Therefore, by the real Hahn-Banach Theorem, /i can be extended to all of X so
that the extended / is linear on real X and satisfies inequality (43). Define l by
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formula (42); clearly, it is linear over complex X and is an extension of I defined on
U. We claim that it satisfies (41)' for all x in X. To see this, we factor l(x) as

l(x) = ar, r real, Ial = 1.

Using the fact that if 1(y) is real, it is equal to 11(y), we deduce that

Il(x)I = r =
a-'l(x) = 1(a 'x) = !(a-'x) 5 p(a_'x)

= p(x). LI

We conclude this chapter by a curious characterization of Euclidean norms
among all norms. According to equation (53) of Chapter 7, every pair of vectors u, v
in a Euclidean space satisfies the following identity:

IIu+v1I22+II U-VII2=2II u1I2+2II v1I2-

Theorem 12. This identity characterizes Euclidean space. That is, if in a real
normed linear space X

Iu + v12 + Iu - v12 = 2Iu12 +2 IV12

for all pairs of vectors u, v, then the norm I
I

is Euclidean.

Proof. We define a scalar product in X as follows:

4(x,y) = Ix +
y12 - Ix - y12.

(44)

(45)

The following properties of a scalar product follow immediately from definition
(45):

2 ,(x,x) = Ix1

Symmetry:

(46)

(Y,x) _ (x,Y),

and

(47)

(x, -Y) _ -(x,Y)

Next we show that (x, y) as defined in (45) is additive:

(48)

(x + Z! Y) = (x, y) + (z,y).

By definition (45),

(49)

4(x+z,y) = Ix+z+yI2- Ix+z- yI2. (50)
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We apply now identity (44) four times:

(i) u=x+y,v'=z:

IX +y+z12+Ix+y-z12=21x+y1-+21z12 (SO)i

(ii) u=y+z, v=x:

Ix+y+z12+ly+z-x122=21y+z12+21x12 (51)jj

(iii) u = x - y, v = z:

Ix-y+z12+Ix-y-z12 = 21x-y12+21z12 (51);,,

(iv) u=z - y, v =x:

Iz-y+x12+ lz-y-x12 = 21z-y12+21x12 (51)j,

Add (51), and (51)ii, and subtract from it (51)iii and (51)j,; we get, after dividing
by 2,

Ix+y+z12-Ix-y+z12
= Ix + y12 - Ix - yl2 + ly + z12 - ly - z12.

(52)

The left-hand side of (52) equals 4(x + z, y), and the right-hand side is
4(x, y) + 4(z, y). This proves (49).

EXERCISE 9. (i) Show that for all rational r,

(rx,y) = r(x,y).

(ii) Show that for all real k,

(kx,y) = k(x,y)



CHAPTER 15

Linear Mappings Between Normed
Linear Spaces

Let X and Y be a pair of finite-dimensional nonmed linear spaces over the reals; we
shall denote the norm in both spaces by I I, although they have nothing to do with
each other. The first lemma shows that every linear map of one nonmed linear space
into another is bounded.

Lemma 1. For any linear map T: X -+ Y, there is a constant c such that for all x
in X,

ITxi < clxl. (1)

Proof. Express x with respect to a basis {xf }:

x=>aixj; (2)

then

By properties of the norm in Y,

From this we deduce that

Tx=>ajTxj.

ITxl laillTxll

ITxi < klxl., 3)

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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where

LINEAR ALGEBRA AND ITS APPLICATIONS

Ixlx = maxlail, k = ITxil.

We have noted in Chapter 14 that I Ix is a norm. Since we have shown in Chapter 14,
Theorem 2, that all norms are equivalent, IxI, < const IxI and (1) follows from
(3).

EXERCISE I. Show that every linear map T: X - Y is continuous, that is, if lim
x = x, then lim Tx,, = Tx.

In Chapter 7 we have defined the norm of a mapping of one Euclidean space into
another. Analogously, we have the following definition.

Definition. The norm of the linear map T: X --> Y, denoted as ITI, is

ITI = sup
ITxI

.

a-#0 IxI

Remark 1. It follows from (1) that ITI is finite.

(4)

Remark 2. It is easy to see that ITI is the smallest value we can choose for c in
inequality (1).

Because of the homogeneity of norms, definition (4) can be phrased as follows:

ITI = sup ITxI. (4)'
jxl=1

Theorem 2. ITI as defined in (4) and (4)' is a norm in the linear space of all
linear mappings of X into Y.

Proof. Suppose T is nonzero; that means that for some vector xo y6 0, Tx0 0 0.
Then by (4),

ITI >
IT*
Ixol

since the norms in X and Yare positive, the positivity of ITI follows.
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To prove subadditivity we note, using (4)', that when S and T are two mappings of
X -r Y, then

IT+SI = sup I(T + S)xI < sup(ITxI+ ISxI)
Ix1=' hl=1

sup ITxI + sup ISxI = ITI + ISI
11=1 1x1=1

The crux of the argument is that the supremum of a function that is the sum of two
others is less than or equal to the sum of the separate suprema of the two summands.

Homogeneity is obvious; this completes the proof of Theorem 2.

Given any mapping T from one linear space X into another Y, we explained in
Chapter 3 that there is another map, called the transpose of T and denoted as T,
mapping Y, the dual of Y, into X', the dual of X. The defining relation between the
two maps is given in equation (9) of Chapter 3:

(T'l, x) = (l, Tx), (5)

where x is any vector in X and 1 is any element of 1'. The scalar product on the right,
(1, y), denotes the bilinear pairing of elements y of Yand I of Y. The scalar product
(m, x) on the left is the bilinear pairing of elements x in X and m in X'. Relation (5)
defines T'1 as an element of V. We have noted in Chapter 3 that (5) is a symmetric
relation between T and T' and that

T"=T, (6)

just as X" is X and Y" is Y.
We have shown in Chapter 14 that there is a natural way of introducing a dual

norm in the dual X' of a normed linear space X, see Theorem 7; for m in X',

ImI' = sup(m,x). (7)

The dual norm for l in Y is defined similarly as sup(l, y), IyI = 1; from this definition,
[see equation (24) of Chapter 14], it follows that

(I,Y) <_ III' IYI (8)

Theorem 3. Let T be a linear mapping from a normed linear space X into
another normed linear space Y, T' its transpose, mapping Y into X. Then

IT'I = ITI, (9)

where X' and Y are equipped with the dual norms.
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Proof. Apply definition (7) to m = VI:

IT'll' = sup(T'1,x).
Ixl= I

Using definition (5) of the transpose, we can rewrite the right-hand side as

IT'll' = sup(l,Tx).
I.CI= I

Using the estimate (8) on the right, with y = Tx, we get

IT'll' < sup Ill' ITxI.
k.1=1

Using (4)' to estimate ITxI we deduce that

IT'll<_I/1'ITI.

By definition (4) of the norm of T', this implies

IT'I S ITI

We replace now T by T' in (10); we obtain

(10)

IT"I
S

IT'I. (10),

According to (6), T" = T, and according to Theorem 8 of Chapter 14, the norms in
X" and 1, the spaces between which T" acts, are the same as the norms in X and Y.
This shows that IT"I = ITI; now we can combine (10) and (10)' to deduce (9). This
completes the proof of Theorem 3.

Let T be a linear map of a linear space X into Y, S another linear map of Y into
another linear space Z. Then, as remarked in Chapter 3, we can define the product ST
as the composite mapping of T followed by S.

Theorem 4. Suppose X, Y, and Z above are normed linear spaces; then

ISTI <_ ISIITI. (11)

Proof. By definition (4),

ISyI S ISIIYI, ITxI S ITIIxI (12)
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Hence

Applying definition (4) to ST completes the proof of inequality (11).

We recall that a mapping T of one linear space X into another is called invertible if it
maps X onto Y, and is one-to-one. In this case T has an inverse, denoted as T-1.

In Chapter 7, Theorem 15, we have shown that if a mapping B of a Euclidean
space into itself doesn't differ too much from another mapping A that is invertible,
then B, too, is invertible. We present now a straightforward extension of this result to
normed linear spaces.

Theorem 5. Let X and Ybe finite-dimensional normed linear spaces of the same
dimension, and let T be a linear mapping of X into Y that is invertible. Let S be
another linear map of X into Y that does not differ too much from T in the sense that

IS - TI < k, k =
1

IT-'I

Then S is invertible.

ISTxI < ISIITxI s ISIITIIxI. (13)

(14)

Proof. We have to show that S is one-to-one and onto. We show first that S is
one-to-one. We argue indirectly; suppose that for xo # 0,

Then

Since T is invertible,

Sxo=0.

Txo = (T - S)xo.

xo = T-' (T - S)xo.

(15)

Using Theorem 4 and (14) and that Ixol > 0, we get

Ixol < IT-'I IT - SIIxoI < IT-i Iklxol = Ixol,

a contradiction; this shows that (15) is untenable and so S is one-to-one.
According to Corollary B of Theorem I in Chapter 3, a mapping S of a

linear space X into another linear space of the same dimension that is one-to-one
is onto. Since we have shown that S is one-to-one, this completes the proof of
Theorem 5.

Theorem 5 holds for normed linear spaces that are not finite dimensional,
provided that they are complete. Corollary B of Theorem 1 of Chapter 3 does not
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hold in spaces of infinite dimension; therefore we need a different, more direct
argument to invert S. We now present such an argument. We start by recalling the
notion of convergence in a nonmed linear space applied to the space of linear maps.

Definition. Let X, Y be a pair of finite-dimensional normed linear spaces. A
sequence {Tn} of linear maps of X into Y is said to converge to the linear map T,
denoted as limn, Tn = T, if

lim ITn - TI = 0.
n-oo

(16)

Theorem 6. Let X be a nonmed finite-dimensional linear space, R a linear map
of X into itself whose norm is less than 1:

IRI < 1. (17)

Then

S=I-R (18)

is invertible, and
00

S-1 = E Rk (18),

0

Proof. Denote Eo Rk as T, and denote Tnx as yn. We claim that {y} is a Cauchy
sequence; that is, Iyn - y1I tends to zero as n and I tend to oo. To see this, we write

yn - y1 = Tnx - Ttx = E Rkx.
j+1

By the triangle inequality

Iyn -y!I :5 E IRtxI (19)
j+l

Using repeatedly the multiplicative property of the norm of operators, we conclude
that

IRkI <- IRIk.

It follows that

IRkxI < IRtIIxI < IRIkIxI

Set this estimate into (19); we get

a

Iyn - YjI <- (>
IRIk/

kI.
+1

(20)
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Since SRI is assumed to be less than one, the right-hand side of (20) tends to zero as n
n

and j tend to oo. This shows that yn = Tnx = E R"x is a Cauchy sequence.
0

According to Theorem 3 of Chapter 14, every Cauchy sequence in a finite-
dimensional normed linear space has a limit. We define the mapping T as

Tx = lim Tnx.
n-roo

(21)

We claim that T is the inverse of I - R. According to Exercise 1, the mapping I - R
is continuous; therefore it follows from (21) that

(I - R)Tx = lim (I - R)Tnx
n-.oo

Since Tn = Rk,
0

n

(I - R)Tnx = (I - R) E Rkx = x - R"+Ix.
0

as n - oo, the left-hand side tends to (I - R) Tx and the right-hand side tends to x,
this proves that T is the inverse of I - R. O

EXERCISE 2. Show that if for every x in X, ITnx - TxI tends to zero as n -, oo,
then ITn - TI tends to zero.

EXERCISE 3. Show that Tn = E Rk converges to S-1 in the sense of definition (16).
0

Theorem 6 is a special case of Theorem 5, with Y = X and T = I.

EXERCISE 4. Deduce Theorem 5 from Theorem 6 by factoring S = T + S - T
asT[I-T''(S-T)].

EXERCISE 5. Show that Theorem 6 remains true if the hypothesis (17) is
replaced by the following hypothesis. For some positive integer m,

JR'"I < 1. (22)

EXERCISE 6. Take X = Y = R", and T: X -f X the matrix Take for the
norm lxi the maximum norm 1x1,0 defined by formula (3) of Chapter 14. Show that
the norm ITI of the matrix (t;,), regarded as a mapping of X into X, is

ITS = max> Ityl. (23)
1
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EXERCISE 7. Take X to be P t normed by the maximum norm Ixlx, Y to be 08"
normed by the 1-norm 1x1 i, defined by formulas (3) and (4) in Chapter 14. Show that
the norm of the matrix (tit) regarded as a mapping of X into Y is bounded by

ITI <_ E Ir,3I.
ij

EXERCISE 8. X is any finite-dimensional normed linear space over C, and T is a
linear mapping of X into X. Denote by tt the eigenvalues of T, and denote by r (T) its
spectral radius:

r(T) = max Itjj.

(i) Show that ITI > r(T).
(ii) Show that IT"I > r(T)".

(iii) Show, using Theorem 18 of Chapter 7, that

lim IT"II/" = r(T)."-x



CHAPTER 16

Positive Matrices

Definition. A real I x I matrix P is called entrywise positive if all its entries pij are
positive real numbers.

Caution: This notion of positivity, used only in this chapter, is not to be confused
with self-adjoint matrices that are positive in the sense of Chapter 10.

Theorem 1 (Perron). Every positive matrix P has a dominant eigenvalue,
denoted by X(P) which has the following properties:

(i) I (P) is positive and the associated eigenvector h has positive entries:

Ph = A(P)h, h > 0. (1)

(ii) X (P) is a simple eigenvalue.
(iii) Every other eigenvalue x of P is less than x(P) in absolute value:

JJ < A(P). (2)

(iv) P has no other eigenvectorf with nonegative entries.

Proof. We recall from Chapter 13 that inequality between vectors in 1$" means
that the inequality holds for all corresponding components. We denote by p(P) the
set of all nonnegative numbers A for which there is a nonnegative vector x # 0 such
that

Px>Ax, x>0.

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
Copyright Q 2007 John Wiley & Sons, Inc.
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Lemma 2. For P positive,

(i) p(P) is nonempty, and contains a positive number,
(ii) p(P) is bounded,
(iii) p(P) is closed.

Proof. Take any positive vector x; since P is positive, Px is a positive vector.
Clearly, (3) will hold for A small enough positive; this proves (i) of the lemma.

Since both sides of (3) are linear in x, we can normalize x so that

ix = E xi = 1, 4 _ (1,...,1). (4)

Multiply (3) by on the left:

Px > Aix = A. (5)

Denote the largest component of iP by b; then b > iP. Setting this into (5) gives
b > A; this proves part (ii) of the lemma.

To prove (iii), consider a sequence of A" in p(P); by definition there is a
corresponding x # 0 such that (3) holds:

Pxn > An, xn. (6)

We might as well assume that the x are normalized by (4):

The set of nonnegative x normalized by (4) is a closed bounded set in 01" and
therefore compact. Thus a subsequence of x tends to a nonnegative x also
normalized by (4), while A" tends to A. Passing to the limit of (6) shows that x, A
satisfy (3); therefore p(P) is closed. This proves part (iii) of the lemma. O

Having shown that p(P) is closed and bounded, it follows that it has a maximum
Amax; by (i), Amax > 0. We shall show now that Amax is the dominant eigenvalue.

The first thing to show is that Amax is an eigenvalue. Since (3) is satisfied by Amax,
there is a nonnegative vector h for which

Ph > Amaxh, h > 0, h # 0; (7)

we claim that equality holds in (7); for, suppose not, say in the kth component:

L p i j h j > Amaxhi, i O k
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Define the vector x = h + eek, where e > 0 end ek has kth component equal to 1, all
other components zero. Since P is positive, replacing h by x in (7) increases each
component of the left-hand side: Px > Ph. But only the kth component of the right-
hand side is increased when h is replaced by x. It follows therefore from (7)' that for
e small enough positive,

Px > Amaxx. (8)

Since this is a strict inequality, we may replace X. by Amax + 8, S positive but so
small that (8) still holds. This shows that Amax + S belongs to p(P), contrary to the
maximal character of A. This proves that Amax is an eigenvalue of P and that there
is a corresponding eigenvector h that is nonnegative.

We claim now that the vector h is positive. For certainly, since P is positive and
h > 0, it follows that Ph > 0. Since Ph = Amaxh, h > 0 follows. This proves part (i)
of Theorem 1.

Next we show that X. is simple. We observe that all eigenvectors of P with
eigenvalue Amax must be proportional to h; for if there were another eigenvector y not
a multiple of h, then we could construct h + cy, c so chosen that h + cy > 0 but one
of the components of h + cy is zero. This contradicts our argument above that an
eigenvector of P is nonnegative is in fact positive.

To complete the proof of (ii) we have to show that P has no generalized
eigenvectors for the eigenvalue Amax, that is, a vector y such that

PY = AmaxY + ch. (9)

By replacing y by -y if necessary we can make sure that c > 0; by replacing y by
y + bh if necessary we can make sure that y is positive; it follows then from (9) and
h > 0 that Py > Amaxy. But then for S small enough, greater than 0,

Py > (Amax + 8)y,

contrary to X. being the largest number in p(P).
To show part (iii) of Theorem 1, let if be another eigenvalue of P, not equal

to Amax, y the corresponding eigenvector, both possibly complex: Py = icy;
componentwise,

:Pijyj = KYi
i

Using the triangle inequality for complex numbers and their absolute values,
we get

EPiuIYII ? PijYil = IKIIYil. (10)
i i
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Comparing this with (3), we see that IKI belongs to p(P). If IKI were = Amax, the
vector

lyi I

ly'I

would be an eigenvector of P with eigenvalue Am., and thus proportional to h:

ly'I=chi. (11)

Furthermore, the sign of equality would hold in (10). It is well known about complex
numbers that this is the case only if all the yl have the same complex argument:

y'=e'ely;I, i= 1,...,1

Combining this with (11) we see that

y; = ceehi, that is, y = (ce'B)h.

Thus K = Am., and the proof of part (iii) is complete.
To prove (iv) we recall from Chapter 6, Theorem 17, that the product of

eigenvectors of P and its transpose PT pertaining to different eigenvalues is zero.
Since pT also is positive, the eigenvector pertaining to its dominant eigenvalue,
which is the same as that of P, has positive entries. Since a positive vector 4 does not
annihilate a nonnegative vector f, part (iv) follows from 4f = 0. This completes the
proof of Theorem 1.

The above proof is due to Bohnenblust; see R. Bellman, Introduction to Matrix
Analysis.

EXERCISE I. Denote by t(P) the set of nonnegative A such that

Px<Ax, x>O

for some vector x # 0. Show that the dominant eigenvalue A(P) satisfies

A(P) = min A. (12)
)LE !(P)

We give now some applications of Perron's theorem.

Definition. A stochastic matrix is an I x I matrix S whose entries are
nonnegative:

Sy>0, (13)
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and whose column sums are equal to 1:

s;1=1, j=1,...,1. (14)

The interpretation lies in the study of collections of l species, each of which has
the possibility of changing into another. The numbers sib are called transition
probabilities; they represent the fraction of the population of the jth species that is
replaced by the ith species. Condition (13) is natural for this interpretation; condition
(14) specifies that the total population is preserved. There are interesting
applications where this is not so.

The kind of species that can undergo change describable as in the foregoing are
atomic nuclei, mutants sharing a common ecological environment, and many others.

We shall first study positive stochastic matrices, that is, ones for which (13) is a
strict inequality. To these Perron's theorem is applicable and yields the following
theorem.

Theorem 3. Let S be a positive stochastic matrix.

(i) The dominant eigenvalue k(S) = 1.
(ii) Let x be any nonnegative vector; then

lim SNx = ch,N-x

where h the dominant eigenvector and c is some positive constant.

(15)

Proof. As remarked earlier, if S is a positive matrix, so is its transpose ST. Since,
according to Theorem 16, Chapter 6, S and ST have the same eigenvalues, it follows
that S and ST have the same dominant eigenvalue. Now the dominant eigenvalue of
the transpose of a stochastic matrix is easily computed: It follows from (14) that the
vector with all entries 1,

= (1,..., 1).

is a left eigenvector of S, with eigenvalue 1. It follows from part (iv) Theorem 1 that
this is the dominant eigenvector and 1 is the dominant eigenvalue. This proves part (i).

To prove (ii), we expand x as a sum of eigenvectors hh of S:

x = E cihl.

Assuming that all eigenvectors of S are genuine, not generalized, we get

SNX =

(16)

(16)N
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Here the first component is taken to be the dominant one; so.l1 = A = 1, jXj <I for
j # 1. From this and (16)N we conclude that

SNx -> ch, (17)

where c = cl, h = hl, the dominant eigenvector.
To prove that c is positive, form the scalar product of (17) with i;. Since

= ST = (ST we get

(SNx, ) = (x, (ST (x, ) - c(h, ) (17)'

We have assumed that x is nonnegative and not equal to 0; i and h are positive.
Therefore it follows from (17)' that c is positive. This proves part (ii) of Theorem 3
when all eigenvectors are genuine. The general case can be handled
similarly.

We turn now to applications of Theorem 3 to systems whose change is governed
by transition probabilities. Denote by x1,. .. , x the population size of the jth
species, j = 1, . . . , n; suppose that during a unit of time (a year, a day, a nanosecond)
each individual of the collection changes (or gives birth to) a member of the other
species according to the probabilities sy. If the population size is so large that
fluctuations are unimportant, the new size of the population of the ith species will be

Yi = Esgxj (18)

Combining the components of the old and new population into single column vectors
x and y, relation (18) can be expressed in the language of matrices as

y = Sx. (18)'

After N units of time, the population vector will be SNx. The significance of Theorem
3 in such applications is that it shows that as N -+ oo, such populations tend to a
steady distribution that does not depend on where the population started from.

Theorem 3 is the basis of Google's search strategy.
Theorem 1-and therefore Theorem 3-depend on the positivity of the matrix P;

in many applications we have to deal with matrices that are merely nonnegative.
How much of Theorem 1 remains true for such matrices?

The three examples,

(0
1)'

(1 10),
and

(I0

1

),

show different behavior. The first one has a dominant eigenvalue; the second has plus
or minus 1 as eigenvalues, neither dominated by the other; the third has I as a double
eigenvalue.
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EXERCISE 2. Show that if some power P' of P is positive, then P has a dominant
positive eigenvalue.

There are other interesting and useful criteria for nonnegative matrices to have a
dominant positive eigenvalue. These are combinatorial in nature; we shall not speak
about them. There is also the following result, due to Frobenius.

Theorem 4. Every nonnegative l x I matrix F, F 54 0, has an eigenvalue A(F)
with the following properties:

(i) A(F) is nonnegative, and the associated eigenvector has nonnegative entries:

Fh = A(F)h, h > 0. (19)

(ii) Every other eigenvalue K is less than or equal to A(F) in absolute value:

SKI < A(F).

(iii) If SKI = A(F), then K is of the form

K = e27rik/mA(F)

where k and m are positive integers, m < 1.

(20)

(21)

Remark. Theorem 4 can be used to study the asymptotically periodic behavior
for large N of S"x, where S is a nonnegative stochastic matrix. This has applications
to the study of cycles in population growth.

Proof. Approximate F by a sequence F of positive matrices. Since the
characteristic equations of F,, tend to the characteristic equations of F, it follows
that the eigenvalues of F,, tend to the eigenvalues of F. Now define

A(F) = lim k(F,,).n-.x

Clearly, as n oc, inequality (20) follows from inequality (2) for F,,. To prove (i),
we use the dominant eigenvector hn of F,,, normalized as in (4):

hn = 1, = 0,..., 0.

By compactness, a subsequence of h,, converges to a limit vector h. Being the limit
of normalized positive vectors, h is nonnegative. Each h,, satisfies an equation

Fnhn = A(F,,)hni

letting n tend to oo we obtain relation (19) in the limit.
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Part (iii) is trivial when A(F) = 0; so we may assume A(F) > 0; at the cost of
multiplying F by a constant we may assume that x(F) = 1. Let x be a complex
eigenvalue of F, liJ = .l(F) = 1; then x can be written as

k=ei9. (22)

Denote by y + iz the corresponding eigenvector:

F(y + iz) = e'a (y + iz). (23)

Separate the real and imaginary parts:

Fy=cosBy-sin9z,
(23)'

Fz=sin9z+cosBy.

The geometric interpretation of (23)' is that in the plane spanned by the vectors y and
z, F is rotation around the origin by 9.

Consider now the plane formed by all points x of the form

x = h + ay + bz, (24)

a and b arbitrary real numbers, h the eigenvector (19). It follows from (19) and (23)'
that in this plane F acts as rotation by 9. Consider now the set Q formed by all
nonnegative vectors x of form (24); if Q contains an open subset of the plane (24), it
is a polygon. Since F is a nonnegative matrix, it maps Q into itself; since it is a
rotation, it maps Q onto itself. Since Q has I vertices, the Ith power of F is the
identity; this shows that F rotates Q by an angle 9 = 2irk/l.

It is essential for this argument that Q be a polygon, that is, that it contain an open
set of the plane (24). This will be the case when all components of h are positive or
when some components of h are zero, but so are the corresponding components of y
and z. For then all points x of form (24) with dal, IbI small enough belong to Q; in this
case Q is a polygon.

To complete the proof of Theorem 4(iii), we turn to the case when some
components of h are zero but the corresponding components of y or z are not.
Arrange the components in such an order that the first j components of h are zero, the
rest positive. Then it follows from Fh = h that F has the following block form:

F = (F0 B I. (25)

Denote by yo and zo the vectors formed by the first j components of y and z. By
assumption, yo + izo 0 0. Since by (23), y + iz is an eigenvector of F with
eigenvalue 0, it follows from (25) that yo + izo is an eigenvector of FO:

Fo(yo + izo) = e'e(yo + izo).
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Since Fo is a nonnegativej x j matrix, it follows from part (ii) of Theorem 4 already
established that the dominant eigenvalue A(Fo) cannot be less than Ie`°I = 1. We
claim that equality holds: A(Fo) = 1. For, suppose not; then the corresponding
eigenvector ho would satisfy

Foho = (1 + S)ho, ho > 0,S > 0. (26)

Denote by k the 1-vector whose first j components are those of ho, the rest are zero. It
follows from (26) that

Fk > (1 + 8)k. (26)'

It is easy to show that the dominant eigenvalue A(F) of a nonnegative matrix can be
characterized as the largest .X for which (3) can be satisfied. Inequality (26)' would
imply that A(F) > 1 +S, contrary to the normalization A(F) = 1. This proves that
A(Fo) = 1.

We do now an induction with respect to j on part (iii) of Theorem 4. Since e'0 is an
eigenvalue of the j x j matrix FO, and A(Fo) = 1, and since j < 1, it follows by the
induction hypothesis that 0 is a rational multiple of 2,r with denominator less than or
equal to j. This completes the proof of Theorem 4.



CHAPTER 17

How to Solve Systems
of Linear Equations

To get numerical answers out of any linear model, one must in the end obtain the
solution of a system of linear equations. To carry out this task efficiently has
therefore a high priority; it is not surprising that it has engaged the attention of some
of the leading mathematicians. Two methods still in current use, Gaussian
elimination and the Gauss-Seidel iteration, were devised by the Prince of
Mathematicians. The great Jacobi invented an iterative method that bears his name.

The availability of programmable, high-performance computers with large
memories-and remember, yesterday's high-performance computer is today's
pocket computer-has opened the floodgates; the size and scope of linear equations
that could be solved efficiently has been enlarged enormously and the role of linear
models correspondingly enhanced. The success of this effort has been due not only
to the huge increase in computational speed and in the size of rapid access memory,
but in equal measure to new, sophisticated, mathematical methods for solving linear
equations. At the time von Neumann was engaged in inventing and building a
programmable electronic computer, he devoted much time to analyzing the
accumulation and amplification of round-off errors in Gaussian elimination. Other
notable early efforts were the very stable methods that Givens and Householder
found for reducing matrices to Jacobi form (see Chapter 18).

It is instructive to recall that in the 1940s linear algebra was dead as a subject for
research; it was ready to be entombed in textbooks. Yet only a few years later, in
response to the opportunities created by the availability of high-speed computers,
very fast algorithms were found for the standard matrix operations that astounded
those who thought there were no surprises left in this subject.

In this chapter we describe a few representative modern algorithms for solving
linear equations. Included among them, in Section 4, is the conjugate gradient
method developed by Lanczos, Stiefel, and Hestenes.

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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The systems of linear equations considered in this chapter are of the class that
have exactly one solution. Such a system can be written in the form

Ax = b, (1)

A an invertible square matrix, b some given vector, x the vector of unknowns to be
determined.

An algorithm for solving the system (1) takes as its input the matrix A and the
vector b and produces as output some approximation to the solution x. In designing
and analyzing an algorithm we must first understand how fast and how accurately an
algorithm works when all the arithmetic operations are carried out exactly. Second,
we must understand the effect of rounding, inevitable in computers that do their
arithmetic with a finite number of digits.

With algorithms employing billions of operations, there is a very real danger that
round-off errors not only accumulate but are magnified in the course of the
calculation. Algorithms for which this does not happen are called arithmetically
stable.

It is important to point out that the use of finite digit arithmetic places an absolute
limitation on the accuracy with which the solution can be determined. To understand
this, imagine a change Sb being made in the vector b appearing on the right in (1).
Denote by Sx the corresponding change in x:

A(x + Sx) = b + Sb.

since according to (1), Ax = b, we deduce that

ASx = Sb.

(2)

(3)

We shall compare the relative change in x with the relative change in b, that is, the
ratio

18X1 ISb1

IxI IbI '
(4)

where the norm is convenient for the problem. The choice of relative change is
natural when the components of vectors are floating point numbers.

We rewrite (4) as

IbI ISxl _ IAxI IA-'SbI

IxI I SbI IxI ISbI
(4)'

The sensitivity of problem (1) to changes in b is estimated by maximum of (4)' over
all possible x and Sb. The maximum of the first factor on the right in (4)' is JAI, the
norm of A; the maximum of the second factor is IA-1 I, the norm of A-'. Thus we
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conclude that the ratio (4) of the relative error in the solution x to the relative error in
b can not be larger than

K(A) = IAI IA-' I. (5)

The quantity K(A) is called the condition number of the matrix A.

EXERCISE I. Show that K(A) is > 1.

Since in k-digit floating point arithmetic the relative error in b can be as large as
10-'t, it follows that if equation (1) is solved using k-digit floating point arithmetic,
the relative error in x can be as large as 10-kK(A).

It is not surprising that the larger the condition number K(A), the harder it is to
solve equation (1), for K(A) = oc when the matrix A is not invertible. As we shall
show later in this chapter, the rate of convergence of iterative methods to the exact
solution of (1) is slow when K(A) is large.

Denote by ,B the largest absolute value of the eigenvalues of A. Clearly,

fi 5 IAI. (6)

Denote by a the smallest absolute value of the eigenvalues of A. Then applying
inequality (6) to the matrix A-' we get

< IA-11. (6)'

Combining (6) and (6)' with (5) we obtain this lower bound for the condition number
of A:

(7)

An algorithm that, when all arithmetic operations are carried out exactly,
furnishes in a finite number of steps the exact solution of (1) is called a direct
method. Gaussian elimination discussed in Chapter 4 is such a method. An algorithm
that generates a sequence of approximations that tend, if all arithmetic operations
were carried out exactly, to the exact solution is called an iterative method. In this
chapter we shall investigate the convergence and rate of convergence of several
iterative methods.

Let us denote by the sequence of approximations generated by an
algorithm. The deviation of x from x is called the error at the nth stage, and is
denoted by e,,:

e = x - x. (8)
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The amount by which the nth approximation fails to satisfy equation (1) is called the
nth residual, and is denoted by r,,:

Residual and error are related to each other by

r,, = Ae,,.

(9)

(10)

Note that, since we do not know x, we cannot calculate the errors en; but once we
have calculated x,, we can by formula (9) calculate r,,.

In what follows, we shall restrict our analysis to the case when the matrix A is
real, self-adjoint, and positive; see Chapter 8 and Chapter 10 for the definition of
these concepts. We shall use the Euclidean norm, denoted as II II, to measure the size
of vectors.

We denote by a and P the smallest and largest eigenvalues of A. Positive
definiteness of A implies that a is positive, see Theorem I of Chapter 10. We recall
from Chapter 8, Theorem 12, that the norm of a positive matrix with respect to the
Euclidean norm is its largest eigenvalue;

IIAII=6. (11)

Since A-' also is positive, we conclude that

11 A-' II = a-'. (11)'

Recalling the definitions (5) of the condition number Awe conclude that for A self-
adjoint and positive,

(12)

1. THE METHOD OF STEEPEST DESCENT

The first iterative method we investigate is based on the variational characterization
of the solution of equation (1) in the case when A is positive definite.

Theorem 1. The solution x of (1) minimizes the functional

E(y) =1(y, Ay) - (y, b); (13)

here (,) denotes the Euclidean scalar product of vectors.

Proof. We add to E(y) a constant, that is, a term independent of y:

F(y) = E(y) + 2(x, b). (14)
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F(x) = 0.

Set (13) into (14); using Ax = b and the self-adjointness of A we can express
F(y) as

F(y) =i(y-x,A(y-x)). (14)'

Clearly,

A being positive means that (v, Av) > 0 for v # 0. Thus (14)' shows that F(y) > 0
for y 54 x. This proves that F(y), and therefore E(y), takes on its minimum at
y=x.

Theorem I shows that the task of solving (1) can be accomplished by minimizing
E. To find the point where E assumes its minimum we shall use the method of
steepest descent; that is, given an approximate minimizer y, we find a better
approximation by moving from y to a new point along the direction of the negative
gradient of if. The gradient of E is easily computed from formula (13):

grad E(y) = Ay - b.

So if our nth approximation is x,,, then the (n + I)st, x,,+,, is

xn+1 = xn - S(Axn - b), (15)

where s is step length in the direction -grad E. Using the concept (9) of residual, we
can rewrite (15) as

xx+1 = xn - Srn. (15)'

We determine s so that E(xn+1) is as small as possible. This quadratic minimum
problem is easily solved; using (13) and (9), we have

E(xn+1) = 2(xn - srn, A(xn - srn)) - (xn - srn, b)

= E(xn) - s(rn, rn) + 262(rn, Ar,,).

Its minimum is reached for

LINEAR ALGEBRA AND ITS APPLICATIONS

(rn, rn)
n

(rn, Arn)
s =

(15)"

(16)

Theorem 2. The sequence of approximations defined by (15), with s given by
(16), converges to the solution x of (1).
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Proof. We need a couple of inequalities. We recall from Chapter 8 that for any
vector r the Rayleigh quotient

(r, Ar)
(r, r)

of a self-adjoint matrix A lies between the smallest and largest eigenvalues of A. In
our case these were denoted by a and 0; so we deduce from (16) that

1 1

We conclude similarly that for all vectors r,

1 (r,A-1r) I0-
(r,

r) <a

(17)

(17)'

We show now that F(x,,) tends to zero as n tends to oo. Since we saw in Theorem
I that F(y), defined in (14), is positive everywhere except at y = x, it would follow
that x,, tends to x.

We recall the concept (8) of error e,, = x,, - x, and its relation (10) to the residual,
Ae = r,,. We can, using (14)' to express F, write

(18)2 2 2

Since E and F differ only by a constant, we deduce from (15)" that

F(x,,+i) = F(xn) - s(r,,, r,,) + Zs-(r,,, Ar,,).

Using the value (16) for s, we obtain

2 (r,,,
(18)'

Using (18), we can restate (18)' as

.F(x,,+i) = F(x,,) I - s (r"'r)
J

(19)
L

Using inequalities (17) and (17)', we deduce from (19) that

1 - F(x).
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Applying this inequality recursively, we get, using (12), that

F(xn) < (1 -
K

)"F(xo). (20)

Using the boundedness of the Rayleigh quotient from below by the smallest
eigenvalue, we conclude from (18) that

211 e

Combining this with (20) we conclude that

2 I
e X12 < - (1 - K )F(xo). (21)

This shows that the error e tends to zero, as asserted in Theorem 2.

2. AN ITERATIVE METHOD USING CHEBYSHEV POLYNOMIALS

Estimate (21) suggests that when the condition number K of A is large, x converges
to x very slowly. This in fact is the case; therefore there is need to devise iterative
methods that converge faster; this will be carried out in the present and the following
sections.

For the method described in this section we need a priori a positive lower bound
for the smallest eigenvalue of A and an upper bound for its largest eigenvalue:
in < C1',6 < M. It follows that all eigenvalues of A lie in the interval [in, MI -
According to (12), K = a; therefore K < M. If in and M are sharp bounds, then K
is = ,u

We generate the sequence of approximations {x,, } by the same recursion formula
(15) as before.

X"+1 = (I - s,,A)x + (22)

but we shall choose the step lengths s,, to be optimal after N steps, not after each step;
here N is some appropriately chosen number.

Since the solution x of (1) satisfies x = (1 - we obtain after
subtracting this from (22) that

(I - (23)

From this we deduce recursively that

eN = PN(A)eo, (24)
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where PN is the polynomial
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N

PN(a)
=

[J (1 - (24)'

From (24) we can estimate the size of eN:

IIeNII<-IIPN(A)IIIIeoII. (25)

Since the matrix A is self-adjoint, so is PN(A). It was shown in Chapter 8 that the
norm of a self-adjoint matrix is max Ipl,p any eigenvalue of PN(A). According to
Theorem 4 of Chapter 6, the spectral mapping theorem, the eigenvalues p of PN(A)
are of the form p = PN (a), where a is an eigenvalue of A. Since the eigenvalues of A
lie in the interval [m, M], we conclude that

II PN(A) II <,,,ma MIPN(a)l. (26)

Clearly, to get the best estimate for II e II out of inequalities (25) and (26), we have
to choose the s,,, n = 1, ... , N so that the polynomial PN has as small a maximum on
[m, M] as possible. Polynomials of form (24)' satisfy the normalizing condition

PN(O) = 1. (27)

Among all polynomials of degree N that satisfy (27), the one that has smallest
maximum on [m, M] is the rescaled Chebyshev polynomial. We recall that the Nth
Chebyshev polynomial TN is defined for - I < u < I by

NO = cosNO, u = cosh. (28)

The rescaling takes [-1, 1] into [m, M] and enforces (27):

_ M+m-2a
P (a) T

M+m
T (29)N

N M-m N M-in '

It follows from definition (28) that IT,,(u)I < I for Jul < 1. From this and (29) we
deduce using M ^'K that

11

mma
MIPN(a)I ^- I

ITN(K+
K- lJ

Setting this into (26) and using (25), we get

(29)'

II eN II-II eo IITN (KK+ i) (30)
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Since outside the interval [-1, 11 the Chebyshev polynomials tend to infinity, this
proves that eN tends to zero as N tends to oo.

How fast eN tends to zero depends on how large K is. This calls for estimating
TN(I + E), f small; we take 0 in (28) imaginary:

-0

2
e

=1+E.

This is a quadratic equation for e0, whose solution is

So

eo = I + E + 2E -+E2 = I + 2E + O(E).

eNO + e-N"'
TN (1 + E) = cosiNo = 2 (1 + 2E)N.

Now set (K + 1)/(K - 1) = 1 + c; then e ^-- 2/K, and

// \ / \N
TNI K+1)

Substituting this evaluation into (30) gives

(31)

IleNll ZI I+K)-Nlleoll~-2(I- f)NIIeoII. (32)

Clearly, eN tends to zero as N tends to infinity.
When K is large, f is very much smaller than K; therefore for K large, the upper

bound (32) for II eN II is very much smaller than the upper bound (21), n = N. This
shows that the iterative method described in this section converges faster than the
method described in Section 1. Put in another way, to achieve the same accuracy, we
need to take far fewer steps when we use the method of this section than the method
described in Section 1.

EXERCISE 2. Suppose K = 100, II eo II = 1, and (I/a)F(xo) = 1; how large do
we have to take N in order to make II eN II < 10-3, (a) using the method in Section 1,
(b) using the method in Section 2?

To implement the method described in this section we have to pick a value of N.
Once this is done, the values of s,,, n = 1, ... , N are according to (24)' determined as
the reciprocals of the roots of the modified Chebyshev polynomials (29):

sk t
= 2 (M + in - (M - in) cos (k +N/2)ir)
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k any integer between 0 and N - 1. Theoretically, that is, imagining all arithmetic
operations to be carried out exactly, it does not matter in what order we arrange the
numbers .sk. Practically, that is, operating with finite floating-point numbers, it
matters a great deal. Half the roots of PN lie in the left half of the interval [m, M]; for
these roots, s > 2/(M + in), and so the matrix (I - sA) has eigenvalues greater than
1 in absolute value. Repeated application of such matrices could fatally magnify
round-off errors and render the algorithm arithmetically unstable.

There is a way of mitigating this instability; the other half of the roots of PN lie in
the other half of the interval [m, M], and for these s all eigenvalues of the matrix
(I - sA) are less than 1. The trick is to alternate an unstable sk with a stable sk.

3. A THREE-TERM ITERATION USING CHEBYSHEV
POLYNOMIALS

We describe now an entirely different way of generating the approximations
described in Section 2 based on a recursion relation linking three consecutive
Chebyshev polynomials. These are based on the addition formula of cosine:

cos(n ± 1)9 = cos6cosn9+ sin9sinn6.

Adding these yields

cos(n + 1)9 + cos(n - 1)9 = 2 cos 9 cos n9.

Using the definition (28) of Chebyshev polynomials we get

Tn-1(u) =

The polynomials P,,, defined in (29), are rescaled Chebyshev polynomials; therefore
they satisfy an analogous recursion relation:

Pn+I(a) = (u,,a + v,,)P,, (a) + WnP,,-I(a). (33)

We will not bother to write down the exact values of u,,, v,,, wn, except to note that, by
construction, P,,(0) = 1 for all n; it follows from this and (33) that

v + W = 1. (33)'

We define now a sequence x,, recursively; we pick x0, set xl = (uoA + 1)xo - uob,
and for n > I

xn+1 = (u,, A + vn)x,, + Wnxn-I - u b. (34)

Note that this is a three-term recursion formula, that is, x,,+1 is determined in terms
of x and x,,_1. Formulas (15) and (22) used in the last sections are two-term
recursion formulas.
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Subtract x from both sides of (34); using (33)' and Ax = b we get a recursion
formula for the errors:

e+I _ (uA + v)e + w,,e_I. (34)'

Solving (34)' recursively, it follows that each en can be expressed in the form
e,, = Q,,(A)eo, where the Q,, are polynomials of degree n, with Qo = 1. Setting this
form of e,, into (34)', we conclude that the polynomials Q satisfy the same recursion
relation as the Pn; since Qo = P0 = 1, it follows that Q = P,, for all n. Therefore

e,, = P.(A)eo (35)

for all n, and not just a single preassigned value N as in equation (24) of Section 2.

4. OPTIMAL THREE-TERM RECURSION RELATION

In this section we shall use a three-term recursion relation of the form

xn+1 = (snA + p,,I)Xn + qnx_j - Snb (36)

to generate a sequence of approximations that converges extremely rapidly to x.
Unlike (34), the coefficients s,, p,,, and q are not fixed in advance but will be
evaluated in terms of rn_1 and r,,, the residuals corresponding to the approximations
x,,_1 and x,. Furthermore, we need no a priori estimates m, M for the eigenvalues
of A.

The first approximation xo is an arbitrary-or educated-guess. We shall use the
corresponding residual, ro = Axo - b, to completely determine the sequence of
coefficients in (36), in a somewhat roundabout fashion. We pose the following
minimum problem:

Among all polynomials of degree n that satisfy the normalizing condition

Q(O) = 1, (37)

determine the one that makes

11 Q(A)ro 11 (38)

as small as possible.
We shall show that among all polynomials of degree less than or equal to n

satisfying condition (37) there is one that minimizes (38); denote such a polynomial
by Q,.

We formulate now the variational condition characterizing this minimum. Let
R(a) be any polynomial of degree less than n; then aR(a) is of degree less than or
equal ton. Let a be any real number; Q,, (a) + eaR(a) is then a polynomial of degree



HOW TO SOLVE SYSTEMS OF LINEAR EQUATIONS

less than or equal to n that satisfies condition (37). Since Q,, minimizes (38),
11 (Q.(A) + eAR(A))ro 112 takes on its minimum at e = 0. Therefore its derivative
with respect to a is zero there:

(Q,.(A)ro, AR(A)ro) = 0.

We define now a scalar product for polynomials Q and R as follows:

{Q, R} = (Q(A)ro, AR(A)ro).

(39)

(40)

To analyze this scalar product we introduce the eigenvectors of the matrix A:

Afj =ajf. (41)

Since the matrix A is real and self-adjoint, the f can be taken to be real and
orthonormal; since A is positive, its eigenvalues aj are positive.

We expand ro in terms of the fj,

ro = E w. (42)

Since f are eigenvectors of A, they are also eigenvectors of Q(A) and R(A), and by
the spectral mapping theorem their eigenvalues are Q(aj), and R(aj), respectively. So

Q(A)ro = E wjQ(aj)j, R(A)ro = E wjR(aj . (43)

Since the f are orthonormal, we can express the scalar product (40) for polynomials
Q and R as follows:

{Q,R} = > Wj ajQ(aj)R(aj) (44)

Theorem 3. Suppose that in the expansion (42) of ro none of the coefficients wj
are 0; suppose further that the eigenvalues aj of A are distinct. Then (44) furnishes a
Euclidean structure to the space of all polynomials of degree less than the order K of
the matrix A.

Proof. According to Chapter 7, a scalar product needs three properties. The first
two-bilinearity and symmetry-are obvious from either (40) or (44). To show
positivity, we note that since each aj > 0,

{Q, Q} = E wj ajQ2(aj) (45)

is obviously nonnegative. Since the wj are assumed nonzero, (45) is zero if
Q(aj) = 0 for all aj, j = 1, ... , K. Since the degree of Q is less than K, it can vanish
at K points only if Q 0.



258 LINEAR ALGEBRA AND ITS APPLICATIONS

We can express the minimizing condition (39) concisely in the language of the
scalar product (40): For n < K, Q is orthogonal to all polynomials of degree less
than n. It follows in particular that Q,, is of degree n.

According to condition (37), Qo - 1. Using the familiar Gram-Schmidt process
we can using the orthogonality and condition (37), determine a unique sequence of
polynomials Q,,. We show now that this sequence satisfies a three-term recursion
relation. To see this we express as linear combination of Qj, j = 0, ... , n + 1:

n+1
//1aQn =

Since the Qj are orthogonal, we can express the cn.j as

Cn.j =
{aQ,,, Qj}
{ Qj, Qj }

Since A is self-adjoint, the numerator in (47) can be rewritten as

{Qn, aQj},

(46)

(47)

(47)'

Since for j < n - 1, aQj is a polynomial of degree less than n, it is orthogonal to Q,,,
and so (47)' is zero; therefore c. j = 0 for j < n - 1. This shows that the right-hand
side of (46) has only three nonzero terns and can be written in the form

aQn = b,,Q,,+I + cnQ,, + d,,Q,,-1 (48)

Since Qn is of degree n, b 54 0. For n = 1, d1 = 0.
According to condition (37), Qk(0) = 1 for all k. Setting a = 0 in (48) we deduce

that

b,, + c,, + d,, = 0.

From (47), with j = n, n - I we have

C11

{aQn,Q,,} dn = {aQn,Qn-I}
= {Qn, Qn} IQ,,-1,.-1YQ

Qn+I = (s,,a + pn)Qn + gnQn-I,

where

I c d
Sn = bn, pn = -bn, qn = -

bn

(49)

(50)

(51)

(52)
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Note that it follows from (49) and (52) that

pn + qn = I.

259

(53)

Theoretically, the formulas (50) completely determine the quantities cn and dn.
Practically, these formulas are quite useless, since in order to evaluate the curly
brackets we need to know the polynomials Qk and evaluate Qk(A). Fortunately cn
and do can be evaluated more easily, as we show next.

We start the algorithm by choosing an xo; then the rest of the xn are determined by
the recursion (36), with sn, p, , and qn from formulas (52), (50), and (49). We have
defined en to be xn - x, the nth error; subtracting x from (36), making use of (53),
that b = Ax, we obtain,

en+1 = (snA + pnl)en + gnen-1 (54)

We claim that

en = Qn(A)eo (55)

To see this we replace the scalar argument a in (51) by the matrix argument A:

Qn+1(A) = (ssA +pn)Qn(A) + q.Qn-1 (A). (56)

Let both sides of (56) act on eo; we get a recurrence relation that is the same as (54),
except that ek is replaced by Qk(A)eo. Since Qo(A) = I, the two sequences have the
same starting point, and therefore they are the same, as asserted in (55).

We recall now that the residual rn = Ax,, - b is related to en = xn - x by
rn = Aen. Applying A to (55) we obtain

rn = Qn(A)ro

Applying the mapping A to (54) gives a recursion relation for the residuals:

rn+ 1 = (SEA + p,,I) rr + qn rn-1

We now set Q = Q,,, R = Q. into (40), and use relation (57) to write

{Q., Q.I = (rn, Arn)

(57)

(58)

(59)

Subsequently we set Q = aQn, R = Qn into (40), and use relation (57) to write

{aQn, Q.} = (Arn,Arn) (59)'

Finally we set Q = aQn and R = Qn_1 into (40), and we use relation (57) to write

{aQn, Qn-1 } = (Arn, Arn-1). (59)"
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We set these identities into (50):

_ (Ar,,,
d. =

(Arn, i )
cn

(rn,Arn) rt (ra-1,Arn-I)
(60)

From (49) we determine b,, = -(c + d,,). Set these expressions into (52) and we
obtain expressions for s, p, and q that are simple to evaluate once rn_i and r, are
known; these residuals can be calculated as soon as we know x,,_, and x or from
recursion (58). This completes the recursive definition of the sequence x,,.

Theorem 4. Let K be the order of the matrix A, and let xK be the Kth term of the
sequence (36), the coefficients being defined by (52) and (60). We claim that xK
satisfies equation (1), AxK = b.

Proof. QK is defined as that polynomial of degree K which satisfies (37) and
minimizes (38). We claim that this polynomial is pA/pA(0),pA the characteristic
polynomial of A; note that pA(0) # 0, since 0 is not an eigenvalue of A. According
to the Cayley-Hamilton theorem, Theorem 5 of Chapter 6, pA(A) = 0; clearly,
QK(A) = 0 minimizes II Q(A)ro II. According to (57), 1'K = QK(A)ro; since
according to the above discussion, QK(A) = 0, this proves that the Kth residual
rK is zero, and therefore xK exactly solves (1). O

One should not be misled by Theorem 4; the virtue of the sequence x is not that it
furnishes the exact answer in K steps, but that, for a large class of matrices of
practical interest, it furnishes an excellent approximation to the exact answer in far
fewer steps than K. Suppose for instance that A is the discretization of an operator of
the form identity plus a compact operator. Then most of the eigenvalues of A would
be clustered around 1; say all but the first k eigenvalues aj of A are located in the
interval (1 - 3, 1 + S).

Since Q,, was defined as the minimizer of (38) subject to the condition Q(0) = 1,
and since according to (57), r,,, we conclude that

IIQ(A)roII

for any polynomial Q of degree n that satisfies Q(0) = 1. Using formula (45) we
write this inequality as

II r IIZ - wjaiQZ(ai), (61)

where the wj are the coefficients in the expansion of ro.
We set now n = k + 1, and we choose Q as follows:

7 a a-1
Q(a)=11(1-aj)Tr E/Tt(-1/s); (62)
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here, as before, T, denotes the lth Chebyshev polynomial. Clearly, Q satisfies
condition (37), Q(0) = 1. For a large, T,(a) is dominated by its leading term, which
is 2'-'a. Therefore,

TIf sl)I=I (63)

By construction, Q vanishes at a1i ... , ak. We have assumed that all the other aj lie in
(1 - S,1 + 3); since the Chebyshev polynomials do not exceed 1 in absolute value in
(-1, 1), it follows from (62) and (63) that for j > k,

I
IQ(aj) I <_ const(2)

where

const^-21 1- 0-
all this information about Q(aj) into (61) we obtainSetting

(64)

(65)

II rk+1 II2 < const2

(;)Ew; < const2
C2)

21

II ro II? (66)
k<j \

For example if Iaj - 1 I < 0.2 for j > 10, and if the constant (65) is less than 10,
then choosing l = 20 in (66) makes II r3o II less than 10-19 II ro II.

EXERCISE 3. Write a computer program to evaluate the quantities sn,p,,, and q,,.

EXERCISE 4. Use the computer program to solve a system of equations of your
choice.



CHAPTER 18

How to Calculate the Eigenvalues
of Self-Adjoint Matrices

1. The basis of one of the most effective methods for calculating approximately the
eigenvalues of a self-adjoint matrix is based on the QR decomposition.

Theorem 1. Every real invertible square matrix A can be factored as

A = QR, (1)

where Q is an orthogonal matrix and R is an upper triangular matrix whose diagonal
entries are positive.

Proof. The columns of Q are constructed out of the columns of A by Gram-
Schmidt orthonormalization. So thejth column qj of Q is a linear combination of the
first j columns a1,... , aj of A:

qt = cllal,

q2 = cl2at + c22a2,

etc. We can invert the relation between the q - s and the a - s:

al = rllgt,
a2 = rt2gt + r22q2,

an=ringi+ +rnngn

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
Copyright Q 2007 John Wiley & Sons, Inc.

(2)
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Since A is invertible, its columns are linearly independent. It follows that all
coefficients ri 1, ... , r, in (2) are nonzero.

We may multiply any of the vectors qj by -1, without affecting their
orthonormality. In this way we can make all the coefficients ri 1, ... , r,,,, in (2)
positive. Here A is an n x n matrix,

Denote the matrix whose columns are qi,... , q by Q, and denote by R the matrix

fori < j,

fori >j.

Relation (2) can be written as a matrix product

A = QR.

(3)

Since the columns of Q are orthonormal, Q is an orthogonal matrix.
It follows from the definition (3) of R that R is upper triangular. So A = QR is the

sought-after factorization (1).

The factorization (1) can be used to solve the system of equations

Ax = u.

Replace A by its factored form,

QRx=u

and multiply by QT on the left. Since Q is an orthogonal matrix, QTQ = 1, and we get

Rx=QTu. (4)

Since R is upper triangular and its diagonal entries are nonzero, the system of
equations can be solved recursively, starting with the nth equation to determine x,,,
then the (n - 1)st equation to determine and so all the way down to xi.

In this chapter we shall show how to use the QR factorization of a real symmetric
matrix A to find its eigenvalue. The QR algorithm was invented by J.G.F. Francis in
1961; it goes as follows:

Let A be a real symmetric matrix; we may assume that A is invertible, for we may
add a constant multiple of the identity to A. Find the QR factorization of A:

A = QR.

Define AI by switching the factors Q and R

A i = RQ. (5)
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We claim that

(i) Al is real and symmetric, and
(ii) Al has the same eigenvalues as A.

To see these we express R in terms of A and Q by multiplying equation (1) by QT
on the left. Since QTQ = I, we get

QTA = R.

Setting this into (5) gives

Al = QTAQ; (6)

from which (i) and (ii) follow.
We continue this process, getting a sequence of matrices {Ak }, each linked to the

next one by the relations

Ak-1 = QkRk,

Ak = RkQk

From these we deduce, as before, that

(7)k

(8)k

Ak = QkAk-1Qk (9)k

It follows that all the matrices Ak are symmetric, and they all have the same
eigenvalues.

Combining the relations (9)k, (9)k-1, ... , (9), we get

Ak = Q(k)TAQ(k), (10k

where

Q(k) .. QI Q2 . Qk - (11)

Define similarly

R(k) = RkRk-I ... R, (12)

We claim that

Ak = Q(k)R(k). (13)k

For k = 1 this is relation (1). We argue inductively; suppose (13)k_1 is true:

Ak-I = Q(k-t)R(k-I).



HOW TO CALCULATE THE EIGENVALUES OF SELF-ADJOINT MATRICES 265

Multiply this by A on the left:

Ak = AQ(k-I)R(k_I).

(14)

Multiply equation (10)k_I by Q(k-I) on the left. Since Q(k-I) is a product of
orthogonal matrices, it is itself orthogonal, and so Q(k-I) Q(k-I)T = I. So we get that

Q(k-I)Ak_I = AQ(k-I).

Combining this with (14) gives

Ak = Q(k-I)Ak_IR(k-I).

Now use (7)k to express Ak_I, and we get relation (13)k.
This completes the inductive proof of (13)k.

Formula (12) defines R(k) as the product of upper triangular matrices. Therefore
R(k) itself is upper triangular, and so (13)k is the QRfactorization of Ak.

Denote the normalized eigenvectors of A by uI,... , its corresponding
eigenvalues by d1,...,dm.

Denote by U the matrix whose columns as the eigenvectors,

U = (uI, ... , u,,,)+

and by D the diagonal matrix whose entries are d1,.. . , d,,,. The spectral
representation of A is

A=UDUT.

Therefore the spectral representation of Ak is

Ak = UDIUT.

(15)

(15)k

It follows from formula (15)k that the columns of Ak are linear combinations of
the eigenvectors of A of the following form:

bldg uI + ... + (15)'

where b1,. .. , bm do not depend on k. We assume now that the eigenvalues of A are
distinct and positive; arrange them in decreasing order:

It follows then from (15)' that, provided bI 0 0, for k large enough the first column
of M is very close to a constant multiple of uI. Therefore qik), the first column of
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Q(k), is very close to u,. Similarly, q(k), the second column of Q(k), would be very
close to u2, and so on, up to q,,k) u,,.

We turn now to formula (10)k; it follows that the ith diagonal element of
Ak is

(Ak)ii = gik)TAgck) _ (gk,Agk).

The quantity on the right is the Rayleigh quotient of A, evaluated at It was
explained in Chapter 8 that if the vector qk differs by a from the ith eigenvector of
A, then the Rayleigh quotient differs by less than from the ith eigenvalue d,
of A. This shows that if the QR algorithm is carried out far enough, the diagonal
entries of Ak are very good approximations to the eigenvalue of A, arranged in
decreasing order.

EXERCISE I. Show that the off-diagonal entries of Ak tend to zero as k tends
to oc.

Numerical calculations bear out these contentions.

2. Next we describe another algorithm, due to Alston Householder, for
accomplishing the QR factorization of a matrix A. In this algorithm, Q is constructed
as a product of particularly simple orthogonal transformations, known as reflections.

A Householder reflection is simply a reflection across a hyperplane, that is, a
subspace of form vTx = 0. A reflection H maps all points of the hyperplane into
themselves, and it projects points x off the hyperplane into their reflection across the
hyperplane. The analytical expression of H is

TXHx=x-2IIv v.

v 112
(16)

Note that if we replace v by a multiple of v, the mapping H is unchanged.

EXERCISE 2. Show that the mapping (16) is norm-preserving.

We shall show now how reflections can be used to accomplish the QR factorization
of a matrix A. Q will be constructed as the product of n reflections:

Q =

H, is chosen so that the first column of HI A is a multiple of e, = (1, 0, ... , 0). That
requires that H,a, be a multiple of e,; since H, is norm-preserving, that multiple has
to have absolute value II a, II. This leaves two choices:

Hiai=IIa, 11 e, or H,a,=-IIa, 11 ea.
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Setting x = a, into (16), we get for Hi the relation

a,-v=llai Ile, or a, -v=-IIai Ile,,

which gives two choices for v:

v+=al- I l a, I I e, or v_ = a, + I l a, I l e, . (17)

We recall that the arithmetical operations in a computer carry a finite number of
digits. Therefore when two nearly equal numbers are subtracted, the relative error in
the difference is quite large. To prevent such loss, we choose in (17) the larger of the
two vectors v+ or v_ for v.

Having chosen H1, denote HI A as A,; it is of form

fx x...x
A, = 0 I,

0 At'

where At'> is an (n - 1) x (n - 1) matrix.
Choose H2 to be of the form

1 0...0
0

H2=

0 Ht2>

where Ht2> is chosen as before so that the first column of

Ht2>At1>

is of the form (x, 0, ... , 0)T. Then the first column of the product H2A, is the
same as the first column of A,, while the second column is of the form
(X. X., 0, ... , 0)T. We continue in this fashion for n steps; clearly, A = H,, ... H, A
is upper triangular. Then we set R = A,, and Q = Hi ... H and obtain the QR
factorization (1) of A. O

Next we show how reflections can be used to bring any symmetric matrix A into
tridiagonal form L by an orthogonal similarity transformation:

OAOT = L. (18)

0 is a product of reflections:

(18)'
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H, is of the form

1 0...0
I

t o HHI

=

0

Denote the first column of A as

xa, =

a column vector with n - 1 components. Then the action of Hl of form
(19) is as follows:

H,A has the same first row as A, and the last n - 1 entries of the first column of
H1A is H(I)a(i)

We choose H(') as a reflexion in R"-I that maps al1i into a vector whose last n - 2
components are zero. Thus the first column of H, A has zeros in the last n - 2 places.

Multiplying an n x n matrix by a matrix of the form (19) on the right leaves the
first column unaltered. Therefore the first column of

AI = H1AHj

has zeros in the last n - 2 rows.
In the next step we choose H2 of the form

1 0

to 1

H2 =
0

a 0 H(2)

(20)

where H(2) is an (n - 2) x (n - 2) reflection. Since the first column of AI has zeros
in the last n - 2 rows, the first column of H2A1 is the same as the first column of AI .
We choose the reflection H(2) so that the second column of H2A1 has zeros in the last
n - 3 rows.

For H2 of form (20), multiplication on the right by H2 leaves the first two columns
unchanged. Therefore

A2 = H2AIHi

has n - 2 and n - 3 zeros, respectively, in the first and second columns. Continuing
in this fashion, we construct the reflections H3,-..,H,,-I. Their product
0 = HI has the property that OAOT has all ijth entries zero when
i > j + 1; But since OAOT is symmetric, so are all entries for j > i + 1. This shows
that OAOT is tridiagonal. 0
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We note that Jacobi proposed an algorithm for tridiagonaliring symmetric
matrices. This was implemented by Wallce Givens.

Theorem 2. When the QR algorithm (7)k' (8)k is applied to a real, symmetric,
tridiagonal matrix L, all the matrices Lk produced by the algorithm are real,
symmetric, and tridiagonal, and have the same eigenvalues as L.

Proof. We have already shown, see (9)k, that Lk is symmetric and has the same
eigenvalues as L. To show that Lk is tridiagonal, we start with L = L0 tridiagonal and
then argue by induction on k. Suppose Lk_, is tridiagonal and is factored as
Lk = QkRk. We recall that thejth column qj of Qk is a linear combination of the first j
columns of Lk; since Lk is tridiagonal, the last n - j - 1 entries of qk are zero. The
jth column of RkQk is Rkqj; since Rk is upper triangular, it follows that the last
n - j - I entries of Rkgq are zero. This shows that the ijth entry of Lk = RkQ is zero
for i > j + 1. Since Lk is symmetric, this proves that Lk is tridiagonal, completing
the induction.

Having L, and thereby all subsequent Lk, in tridiagonal form greatly reduces the
number of arithmetic operations needed to carry out the QR algorithm.

So the strategy for the tridiagonal case of the QR algorithm is to carry out the QR
iteration until the off diagonal entries of Lk are less than a small number. The
diagonal elements of Lk are good approximations to the eigenvalues of L.

3. Deift, Nanda, and Tomei observed that the Toda flow is a continuous analogue
of the QR iteration. Flaschka has shown that the differential equations for the Toda
flow can be put into commutor form, that is, in the form

dL=BL - LB,

where L is a symmetric tridiagonal matrix

(21)

a, b, 0

L= bi a'
(22)

0 b,1-i a

and B is the antisymmetric tridiagonal matrix

0 b, 0

-b, 0B=
bn 1

0 -b,,_, 0 0

(23)
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EXERCISE 3. (i) Show that BL - LB is a tridiagonal matrix.
(ii) Show that if L satisfies the differential equation (21), its entries satisfy

d
dt ak

= 2(bk - bk-1

d
(24)

dtbk = bk(ak+I - ak),

where k = 1,...,n and bo = b = 0.

Theorem 3. Solutions L(t) of equations in commutator form (21), where B is
antisymmetric, are isospectral.

Proof. Let the matrix V(t) be the solution of the differential equation.

dV = BV, V(0) = I.
t

Since B(t) is antisymmetric, the transpose of (25) is

(25)

dt VT
-VTB, VT(O) = I. (25)T

Using the product rule for differentiation and equations (25) and (25)T, we get

dt VTV =
(VT)V+VTV

__VTBV+VTBV=0.

Since VTV = I at t = 0, it follows that VT(I)V(t) = I for all I. This proves that for all
t, V(t) is an orthogonal matrix.

We claim that if L(t) is a solution of (21) and V(t) a solution of (25), then

VT(t)L(t)V(t) (26)

is independent of t. Differentiate (26) with respect to t; using the product rule, we get

(VT)LV+VT(L)V+VTLV. (27)

Using equations (21), (25), and (25)l, we can rewrite (27) as

-VTBLV + VT(BL - LV) + VTLBV,
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which is zero. This shows that the derivative of (26) is zero, and therefore (26) is
independent of t. At t = 0, (26) equals L(O), since V(0) is the identity; so

VT(t)L(t)V(t) = L(0). (28)

Since V(t) is an orthogonal matrix, (28) shows that L(t) is related to L(0) by an
orthogonal similarity. This completes the proof of Theorem 3.

Formula (28) shows that if L(0) is real symmetric-which we assume-then L(t)
is symmetric for all t.

The spectral representation of a symmetric matrix L is

L = UDUT, (29)

where D is a diagonal matrix whose entries are the eigenvalues of L, and the columns
of U are the normalized eigenvectors of L; (29) shows that a set of symmetric
matrices whose eigenvalues are uniformly bounded is itself uniformly bounded. So
we conclude from Theorem 3 that the set of matrices L(t) are uniformly bounded. It
follows from this that the system of quadratic equations (24) have a solution for all
values of t.

Lemma 4. An off-diagonal entry bk(t) of L(t) is either nonzero for all t, or zero
for all t.

Proof. Let [to, ti] be an interval on which bk(t) is nonzero. Divide the differential
equation (24) for bk by bk and integrate it from to to ti:

h

log bk(ti) - log bk(to) = f (ak+I - ak)dt.
to

Since, as we have shown, the functions ak are uniformly bounded for all t, the
integral on the right can tend to oc only if to or tj tends to oc. This shows that
log bk(t) is bounded away from -oo, and therefore bk(t) is bounded away from zero
on any interval of t. This proves that if bk(t) is nonzero for a single value of t, it is
nonzero for all t.

If one of the off-diagonal entries bk of L(0) were zero, the matrix L(0) would fall
apart into two matrices. We assume that this is not the case; then it follows from
Lemma 4 that the bk(t) are nonzero for all t all k.

Lemma 5. Suppose none of the off diagonal terms bk in L is zero.

(i) The first component uik of every eigenvector uk of L is nonzero.

(ii) Each eigenvalue of L is simple.
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Proof. (i) The first component of the eigenvalue equation

Luk = dkuk

is

alulk +blu2k = dkulk.

(30)

(31)

If ulk were zero, it would follow from (31), since b, # 0, that u2.k = 0. We can then
use the second component of (30) to deduce similarly that u3,k = 0; continuing in
this fashion, we deduce that all components of uk are zero, a contradiction.

(ii) Suppose on the contrary that dk is a multiple eigenvalue; then its eigenspace
has dimension greater than I. In a space of dimension greater than one, we can
always find a vector whose first component is zero; but this contradicts part (i) of
Lemma 5. 0

Lemma 6. The eigenvalues d1,...,d and the first components u1,k,

k = 1, ... , n, of the normalized eigenvectors of L uniquely determine all entries
a1i...,a and b1,...,bk_I of L.

Proof. From the spectral representation (29), we can express the entry L I I = al
of L as follows:

al = > dkuik. (32),

From equation (31) we get

blu2k = (dk - al)ulk (33),

Squaring both sides and summing with respect to k gives

bi = E (dk - a1)2uik; (34)l

here we have used the fact that the matrix U is orthogonal, and therefore

2
u2k = 1.

We have shown in Lemma 4 that bk(t) doesn't change sign; therefore bk is
determined by (34) 1. We now set this determination of b1 into (33), to obtain the
values of u2k.

Next we use the spectral representation (29) again to express a2 = L22 as

a2 = > dku7J. (32)2
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We proceed as before to the second equation in 30, which we write as

b2u3k = -blulk + (dk - a2)u2k (33)2

Squaring and summing over k gives

b2 = E (-bluk + (dk - a2)u2k)2, (34)2

and so on.
Jungen Moser has determined the asymptotic behavior of L(t) as t tends

to00.

Theorem 7. (Moser). L(t) is a solution of equation (21). Denote the eigenvalues
of L by dl , ... , d,,, arranged in decreasing order, and denote by D the diagonal matrix
with diagonal entries dl, ... , d,,. Then

lim L(t) = D.r-.x

Similarly,

(34)

lim L(t) = D_, (34)-
3C

where D_ is the diagonal matrix whose diagonal entries are dl.

Proof. We start with the following lemma.

Lemma 8. Denote by u(t) the row vector consisting of the first components of
the normalized eigenvectors of L(t):

u=(ull,...,ule)-

Claim:

u(t) =
u(0)eor

II u(0)eor II

(35)

(36)

Proof. We have shown that when L(t) satisfies (21), L(t) and L(0) are related by
(28). Multiplying this relation by V(t) on the left gives

L(t)V(t) = V(t)L(0). (28)'
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Denote as before the normalized eigenvectors of L(t) by Uk(t). Let (28)' act on uk(0).
Since

L(0)uk(0) = dkuk(0),

we get

L(t)V(t)uk(0) = dkV(t)uk(0).

This shows that V(t)uk(0) = uk(t) are the normalized eigenvectors of L(t).
V(t) satisfies the differential equation (25), AV = By. Therefore uk(t) _

V(t)uk(0) satisfies

d
d

Ilk = Buk.

Since B is of form (23), the first component of (37) is

d
d Ulk = blu2k

We now use equation (33)I to rewrite the right-hand side:

d
drink = (dk - al)ulk

Define f (t) by

Equation (37)" can be rewritten as

from which we deduce that

where Ck is a constant. So

f (t) =
J

, a, (s)ds.
0

d (')-d"dt ulk(t) = 0,

ef(')-dx-rUlk = Ck,

(37)

(37)'

Ulk(t) = Cked"F(t),
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where F(t) = exp [f(t)]. Since f (0) = 0, F(O) = 1, and ck = ulk(0); we obtain

Ulk(t) = ulk(0)ed'`F(t). (38)

In vector notation, (38) becomes

u(t) = u(0)e' F(t).

Since u(t) is the first row of an orthogonal matrix, it has norm 1. This shows that F(t)
is the normalizing factor, and it proves formula (36). 0

(i) Since the eigenvalues of L(t) are distinct (see Lemma 5), formula (36) shows
that as t - oo, the first component u 11 (t) of u(t) is exponentially larger than the other
components. Since the vector u(t) has norm 1, it follows that as t -' oo, ul 1(t) tends
to 1, and ulk(t), k > 1, tend to zero at an exponential rate.

(ii) Next we take equation (32)1:

al (t) = dkulk(t)

From what we have shown about Ulk(t), it follows that al (t) tends to d1 at an
exponential rate as t -' oo.

(iii) To estimate b1 we take the representation (34)1:

bl (t) (dk -a, (t) )2uk (t)

From al (t) -* dl and the fact that u(t) is a unit vector, we deduce that b1 (t) tends to
zero at an exponential rate as t - oo.

(iv) The first two rows of u are orthogonal:

ulk(t)u2k(t) = 0.

According to (i), u!l(t) -* 1 and ulk(t) -> 0 exponentially as
therefore from (39) that u21 (t) -> 0 exponentially as t -+ oo.

(v) From (31) we deduce that

u2k dk - alulk
U22 d2 - al u12

By the explicit formula (38) we can write this as

u2k(t) - dk - al (t) u2k(0)

U22 (t) d2 - a l (t) u22 (0)
e

(39)
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Take k > 2; then the right-hand side of (41) tends to zero as t -> oc, and therefore
U2k(t) -> 0 as t -> oo for k > 2. We have shown in (iv) that U21 (t) -> 0 as t -> cc.
Since (u21, ... , u2,) is a unit vector, it follows that u22(t) -> 1 exponentially.

(vi) According to formula (32)2,

a2(t) _ dku2k(t).

Since we have shown in (v) that u2k(t) -> 0 for k # 2 and that u22 -> 1, it follows
that a2(t) -> d2.

(vii) Formula (34), represents b2(t) as a sum. We have shown above that all
terms of this sum tend to zero as t --> oo. It follows that b2(t) -> 0 as
t -> oo, at the usual exponential rate.

The limiting behavior of the rest of the entries can be argued similarly; Deift et al.
supply all the details.

Identical arguments show that L(t) tends to D_ as t -> -oo.
Moser's proof of Theorem 7 runs along different lines.
We conclude this chapter with four observations.
Note 1. It may surprise the reader that in Lemma 8 we present an explicit solution.

The explanation is that the Toda lattice, of which (21) is a form, is completely
integrable. According to Liouville's Theorem, such systems have explicit solutions.

Note 2. Moser's Theorem is a continuous analogue of the convergence of the QR
algorithm to D when applied to a tridiagonal matrix.

Note 3. Deift et al. point out that (21) is only one of a whole class of flows of
tridiagonal symmetric matrices that tend to D as t --> oc. These flows are in
commutator form (21), where the matrix B is taken as

B = P(L), - p(L)-,

where p is a polynomial, M+ denotes the upper triangular part of M, and M_ denotes
its lower triangular part. The choice (23) for B corresponds to the choice p(L) = L.

Note 4. Deift et al. point out that solving numerically the matrix differential
equation (21) until such time when b1,. .. , b become less than a preassigned small
number is a valid numerical method for finding approximately the eigenvalues of L.
In Section 4 of their paper they present numerical examples comparing the speed of
this method with the speed of the QR algorithm.
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Solutions of Selected Exercises

CHAPTER1

Ex 1. Suppose z is another zero:

x+z=x for all x.

Setx=0:0+z= 0. But also z + 0 = z, so z = 0.

Ex 3. Every polynomial p of degree < n can be written as

p = a,xn-I + a2xn-2 + ... a

Then p - (a, , ... , a,,) is an isomorphism.

Ex 7. If x, , x2 belong to X and to Y,, then x, + x2 belongs to X and Y.

Ex 10. If x; were 0, then

l.xi + 0.x1 = 0.

i0i

Ex 13. (iii) If x, - x2 is in Y, and x2 - x3 is in Y, then so is their sum
x, -x2+x2-x3=x, -x3.

Ex 14. Suppose {x,} and {x2} have a vector x3 in common. Then x3 - x, and
x3 - x2; but then x, - X2, so {x,} = {x2}.

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
Copyright 6) 2007 John Wiley & Sons, Inc.
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Ex 16. (i) Polynomials of degree < n that are zero at ti,... , tt can be written in the
form

q(t)JJ(t-t;),

where q is a polynomial of degree < n - j. These clearly form a linear space, whose
dimension is n -j.

By Theorem 6,

dimX/Y=dimX - dimY=n-(n-j) =j.

The quotient space X/Y can be identified with the space of vector

(p(ti),...,p(tj))

Ex 19. Use Theorem 6 and Exercise 18.

Ex 20. (b) and (d) are subspaces

Ex 21. The statement is false; here is an example to the contrary:

X = R2 = (x,y)space
U={y=0},v={x=0},w={x=y}.
U+v+w=R2,unv={0},Unw={0}
vnw={o},unvnw=o.

So

201+1+1-0-0-0-0.

CHAPTER 2

Ex 4. We choose MI = m3; then (9) is satisfied for p(t) = t. For p(t) = I and
p(t) = t', (9) says that

2 = 2mi + m2, 3 = 2mia2.

So

1 2
nil = 3a2 , and m2 = 2 3a2 ,

from which (ii) follows. (iii) (9) holds for all odd polynomials like t3 and t5. For
p(t) = t4, (9) says that

5=2mia4=2a2,

which holds for a = 3/5.
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Ex 5. Take in1 = m4, m2 = m3, in order to satisfy (9) for all odd polynomials. For
p(t) = I and p(t) = t2 we get two equations easily solved.

Ex 6. (a) Suppose there is a linear relation

all (p) + b12(p) + c13(p) = 0,

Set p = p(x) = (x - 2)(x - g3). Then p(i;2) = p(t;3) = O,p(1) # 0; so we get
from the above relation that a = 0. Similarly b = 0, c = 0.

(b) Since dim P2 = 3, also dim P, = 3. Since 11, 12, 13 are linearly independent,
they span P.

(c 2) Set

P1 (x) = (x - 2)(x - 3)/(I - 2)(I - 3),

and define p2, p3 analogously. Clearly

1;(Pi)=
1 if i = j
0if i¢j.

Ex 7. e(x) has to be zero for x = (1, 0, -1, 2) and x = (2,3, 1, 1). These yield two
equations for c1, . . . , c4:

C1 -C3+2c4=0, 2c1+3C2+C3+C4=0.

We express c1 and c2 in terms of c3 and c4. From the first equation, c l = C3 - 2c4.
Setting this into the second equation gives c2 = -C3 + C4.

CHAPTER 3

Ex 1. If Ty1 = u1, Ty2 = u2, then T(y1 +y2) = u1 + u2, and conversely.

Ex 2. Suppose we drop the ith equation; if the remaining equations do not
determine x uniquely, there is an x that is mapped into a vector whose components
except the ith are zero. If this were true for all i = 1, . . . , in, the range of the mapping
x -3 u would be in-dimensional; but according to Theorem 2, the dimension of the
range is < n < in. Therefore one of the equations may be dropped without using
uniqueness; by induction in - n of the equations may be omitted.

Ex 4. Rotation maps the parallelogram 0, x, y, x + y into another parallelogram
0, X', y', z'; therefore z' = x' + y'.

ST maps (1, 0, 0) into (0, 1, 0); TS maps (1, 0, 0) into (0, 0, 1).
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Ex5. SetTx=u;then (T-'T)x=T-'u=x, and(TT-')u=Tx=u.

Ex 6. Part (ii) is true for all mappings, linear or nonlinear. Part (iii) was illustrated
by Eisenstein as follows: the inverse of putting on your shirt and then your jacket is
taking off your jacket and then your shirt.

Ex 7. ((ST)1,x) _ (1, (ST)'x);

also
((STI,x) = (TI,S'x) = (I,T'S'x),

from which (ST)' = T'S' follows.

Ex 8. (TI, x) = (1, T'x) = (T"I, x) for all x; therefore TI = T"I.

Ex 10. If M = SKS-', then S-'MS = K, and by Theorem 4,

S-'M-'S = K-'.

Ex 11. AB = ABAA-' = A(BA)A-1, by repeated use of the associative law.

Ex 13. The even part of an even function is the function itself.

CHAPTER 4

Ex 1. (DA)s _ DikAkJ = diAjj, (AD)U = AikDki = AjjdJ.

Ex 2. In most texts the proof is obscure.

Ex 4. Choose B so that its range is the nullspace of A, but the range of A is not the
nullspace of B.

CHAPTER 5

Ex 1. P(PIoP2(x)) = a(PioP2)P(x). Since Pi0P2(x) = PI(P2(x)),

P(Pi°P2(x)) = P(Pi(P2(x))) = a(Pi)P(P2(x));

also

P(P2(x)) = a(P2)P(x).

Combining these identities yields a(P, P2) = a(Pi)a(P2).
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Ex 2. (c) The signature of the transposition of two adjacent variables xk and xk+i
is -1. The transposition of any two variables can be obtained by composing
an odd number of interchanges of adjacent variables. The result follows from
Exercise 1.

(d) To factor p = as a product p = tk ... ti of transpositions, set

t

1 2...pi...n
l

pi 2...I...n

_ 1 2...p2...n
t2

I p2...2...n

and so on.

Ex 3. Follows from (7)b.

Ex 4. (iii) When ai = el,... , a,, = e,,, the only nonzero term on the right side in
(16) is p = identity.

(iv) When a; and aj are interchanged, the right side of (16) can be written as

where t is the transposition of i and j. The result follows from a(top)
a(t)a(p) = -a(p)-

Ex 5. Suppose two columns of A are equal. Then, by (iv),

D(a, a) _ -D(a, a),

so 2D(a, a) = 0.

CHAPTER 6

Ex 2. (a) All terms in (14)' tend to zero.
(b) Each component of A N h is a sum of exponential functions of N, with distinct

positive exponents.

Ex 5. (25) is a special case of (26), with q(a) = aN. The general case follows by
combining relations (25) for various values of N.

Ex 7. For x in N,t

(A - aI)'Ax = A(A - dI)dx = 0.
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Ex 8. Letp(s) be a polynomial of degree less than > d;. Then some as is a root of p
of order less than df. But then p(A) does not map all of Nd; into 0.

Ex 12.

CHAPTER 7

11 = (1,-1), 12 = (1,2),

(li,hi) = 3, (1,,h2) = 0,

(12,hi) = 0, (12,h2) = 3.

Ex 1. According to the Schwarz inequality, (x, y) 5 II x II for all unit vectors y. For
Y = x/II x II equality holds.

Ex 2. Let Y denote any subspace of X, x and Zany pair of vectors in X. Decompose
them as

x=Y+y1, Z=U+U1,

where y and u are in Y, u1 and u1 orthogonal to Y; then

Px=y, Pz=u,

P orthogonal projection into Y.

(Px, z) = (y, u + u1) _ (Y, u);

(x, Pz) = (Y + 3'', u) _ (Y, U)

This proves that P is its own adjoint.

Ex 3. Reflection across the plane X3 = 0 maps (x1,x2ix3) into (x,,x2ix3). The
matrix representing this mapping is

1 0 0
0 1 0
0 0 -1

whose determinant is -1.

Ex S. If the rows of M are pairwise orthogonal unit vectors, then according to the
rules of matrix multiplication, MM* = I. Since a right inverse is a left inverse as
well, M*M = I; from this it follows from the rules of matrix multiplication that the
columns of M are pairwise orthogonal unit vectors.
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Ex 6. a,, = (Ae,, e,). By the Schwarz inequality

lain<_11Aee1111er11

From the definition of norm

1IAei1I<11A1111eeII

Since II e; II = II e, II = 1, we deduce that

Ia,,IcIIAII.

Ex 7. Let xl , ... , x be an orthonormal basis for x. Then any x in X can be
expressed as

and

We can write Ax as

Ax= >a,Ax,,

so

11Ax 11<EIajI 11Axi11

Using the classical Schwarz inequality yields

11 Ax 112<1: IajI1
1:

11 Axi 112.

from which

I1A112<EIIAxj112

follows.
Apply this inequality to A - A in place of A to deduce that if (A - A)x,

converges to zero for all x,, so does II A - A II

Ex 8. According to identity (44),

11

x+Y 112 = 11x112+2Re(x.y)+IIY112,
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Replace y by ty, where t = -Re(x, y)/ II y 112. Since the left side is nonnegative,
we get

IRe(x,y)I <- II x IIII y II.

Replace x by kx, Ikl = 1, and choose k so that the left side is maximized; we obtain

I(x,y)I:IIx1111 yII.

Ex 14. For any mapping A,

det A* = det A.

For M unitary, M*M = I; by the multiplicative property of determinants,

detM* detM = det I = 1.

Using det M* = det M we deduce

IdetMI2=1.

Ex 17.

so

(AA* )ii = 1: alkaki = 1: aikaik = E Iaik l2 .

k k k

trAA* _ E (AA*)ii = E Iaik12.
i i,k

Ex 19. For A = (u 3), trA = 4, det A = 3, so the characteristic equation of A is

a2-4a+3 = 0,

Its roots are the eigenvalues of A; the larger root is a = 3.
On the other hand, E laik I2 = 1 + 4 + 9 = 14; 14 3.74, so by (46) and (51)

3<IIA II<3.74.

For the value of II A II = 3.65, see Ex. 2 in Chapter 8.

Ex 20. (1) Since det (x, y, z) is a multilinear function of x and y when the other
variables are held fixed, w(x, y) is a bilinear function of x and y,

(ii) follows from det (y, x, z) = - det(x, y, z),
(iii) is true because det (x, y, x) = 0 and det (x, y, y) = 0.
(iv) Multiply the matrix (x, y, z) by R: R(x, y, z) = (Rx, Ry, Rz).
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By the multiplicative property of determinants, and since det R = 1,

det(x, y, z) = det(Rx, Ry, Rz);

therefore

(w(x, Y), z) = (w(Rx, RY), Rz) =
(R*w(Rx,

RY, z)),

from which

w(x, y) = R*w(Rx, Ry)

follows. Multiply both sides by R.
(v) Take xo = a(1, 0, 0)', yt, = b(cos O, sin 0,0)'.

fa b cos B zI

(xo x yo, z) = det 0 b sin O Z2

0 0 Z3

_ (ab sin 0)z3

Therefore

x0 x yo = ab sin 0(0, 0, 1)'.

Since a=1Ixo 1I,b=11 Yo II,

11xoxyoII IIxolIIIYo11sin0.

Any pair of vectors x, y that make an angle 0 can be rotated into xo, yo; using (iv)
we deduce

11xxY11=11x1111)'II Isin91.

CHAPTER 8

Ex 1. (x, Mx) = M* (x, x) = (x, M"x);

Re(x, Mx) =
2

(x, Mx) +
2

(x, Mx) = x, M

2
M x .
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Ex 4. Multiply (24)' by M on the right; since M"M" = I,

HM = DM.

The jth column of the left side is H,,,j, where mj is the jth column of M. The jth
column of the right side is djmj; therefore

Hmj = dim`.

Ex 8. Let a be an eigenvalue of M-1H, u an eigenvector:

M-'Hu = au.

Multiply both sides on the left by M, and take the inner product with u:

(Hu, u) = a(Mu, u),

Since M is positive,

(Hu, u)
= G.

(Mu, U)

This proves that a is real.

Ex 10. A normal matrix N has a full set of orthonormal eigenvectors fi , ... , f,,:

Nf=nn.

Any vector x can be expressed a

xa,f IIx112= Iajl2
while

Nx ajn II Nx 112 =
E

IaiI2In l2;

so

II Nxll<maxlnil IIxII,

with equality holding for x = f,,,, In,,,l = max Init. This proves that

IINII=maxlnjl.
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Ex 11. (b) An eigenvector of S, with eigenvalue v, satisfies

f-i = vf,j= 2,...,n, f, = vfl.

so

f, = v'- Iffn = v".fi

Therefore v is an nth root of unity:

and

Their scalar product,

27riv,. = exp-k, k= 1, .... n,
n

fvk', ..,v.-").

(j-, fr) exp
2II,r

kj eXp
2n
n ej

_ exp1 1 =0
n

fork54 1.

/
Ex12. (i)A`A=(2

3)(0

(1 2
3

The characteristic equation of A"A is

The larger root is

By Theorem 13,

A2- 14), +9=0.

Amax = 7 + 40 13.224.

11A11= ~3.65.

(ii) This is consistent with the estimate obtained in Ex. 19 of Chapter 7:

3<1A11<3.74.

_ 1 2

Ex 13. (2 3 01) 0 3 )=(2 13)-1 0 /
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The characteristic polynomial of the matrix on the right is

XZ - 15,1 + 22 = 0,

whose larger root is

15 + 137
Amax = 2 13.35

By Theorem 13,

1 0 1

3( - v/X--.. -_
2 3 0

CHAPTER 9

Ex 2. Differentiate A-' A =I using the product rule:

(A-')A + A' d-A = 0.

Solve for AA-'; (3) results.

Ex 3. Denote (0
/

as C; C2 = I, so C" = C for n odd, = I for n even.

So

Ex 6.

By formula (10)

so

expC=C(1 ++ I +I(I
=Ce-e_1+1e/+e-1

2 2
- (1.54 1.17

1.17 1.54

For Y(t) = exp At,

.

.65.

d
Y(t) = (expAt)A, Y-'

dY
= A.

dt dt

dt log det exp At = tr A,

log det exp At = t tr A.

289
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Thus

detexpAt = exp(t tr A).

Ex 7. According to Theorem 4 in Chapter 6, for any polynomial p, the
eigenvalues of p(A) are of the form p(a), a an eigenvalue of A. To extend this
from polynomials to the exponential function we note that ee is defined as the
limit of polynomials, em(s) that are defined by formula (12). To complete the
proof we apply Theorem 6.

In Ex. 6 we have shown that det exp A = exp(tr A); this indicates that the
multiplicity of e° as an eigenvalue of eA is the same as the multiplicity of a as an
eigenvalue of A.

CHAPTER 10

Ex 1. In formula (6) for f we may take aj to be either the positive or negative
square root. This shows that if H has n distinct, nonzero eigenvalues, H has 2° square
roots. If one of the nonzero eigenvalues of H has multiplicity greater then one, H has
infinitely many square roots.

Ex 3. A = (2 5) is positive; it maps (1, 0) into (1, 2). B = C 2 5) is positive; it maps
(1, 0) into (1, -2). The vectors (1, 2) and (1, -2) make an angle > n/2, so AB + BA
is not positive. Indeed,

AB+BA= 6 0
0 42

has one negative eigenvalue.

Ex 4. (a) Apply Theorem 5 twice.
(b) Apply Theorem 5 k times,

where 2k = m.
(c) The limit

m[M'/m - I] < m[NI /m - I]

gives

log M < log N.
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Note. (b) remains true for all positive exponents m > 1.

Ex 5. Choose A and B as in Exercise 3, that is positive matrices whose
symmetrized product is not positive. Set

M=A, N=A+tB,

t a sufficiently small positive number. Clearly, M < N.

N2 = A2 + t(AB + BA) + t2B2;

for t small the term t2 B is negligible compared with the linear term. Therefore for t
small N22 is not greater than M2.

Ex 6. We claim that the functions f(s) = -(s+t)-I, t positive, are monotone
matrix functions. For if 0 < M < N, then 0 < M + tI < N + tI, and so by
Theorem 2,

(M+tI)-1 > (N+tI)-'.

The function f (s) defined by (19) is the limit of linear combinations with positive
coefficents of functions of the form s and - (s + t) -I, t > 0. The linear combinations
of monotone matrix functions is monotone, and so are their limits.

Note 1. Loewner also proved the converse of the theorem stated: Every monotone
matrix function is of form (19).

Note 2. Every function f(s) of form (19) can be extended to an analytic function
into the complex upper half plane Im s > 0, so that the imaginary part off (s) is
positive there, and zero on the positive real axis s > 0. According to a theorem of
Herglotz, all such functions f (.s) can be represented in the form (19).

It is easy to verify that the functions s, 0 < in < 1, and the function log s have
positive imaginary parts in the upper half plane.

Ex 7. The matrix

Gij= ,r,>0,r;+rj+l
is a Gram matrix:

Gij = J f (t)f (t)dt, fj(t) = tri-'
0

Ex 10. By the Schwarz inequality, and the definition of the norm of M - N,

(u, (M - N)u) < II u II II (M - N)u II

<IIu11211M-NII=dIIu1I?



292

Therefore

LINEAR ALGEBRA AND ITS APPLICATIONS

(u, Mu) < (u, Nu) + d 11 u 112 = (u, (N + dI)u).

This proves that M < N + dl; the other inequality follows by inter changing the role
of M and N.

Ex 11. Arrange the m; in increasing order:

Suppose the n; are not in increasing order, that is that for a pair of indices i < j,
n; > nj. We claim that interchanging n; and n1 increases the sum (51):

n;mi + njmj < nlmi + n,mj.

For rewrite this inequality as

(ni-nj)mi+(nz-ni)mj
=(n;-n1)(mi-mi)<0,

which is manifestly true. A finite number of interchanges shows that (51) is
maximized when the n; and m, are arranged in the same order.

Ex 12. If Z were not invertible, it would have zero as an eigenvalue, contradicting
Theorem 20.

Let h be any vector; denote Z- I by k. Then

(Z-'h, h) = (k,Zk);

Since the self-adjoint part of Z is positive, the right side above is positive. But then
so is the left side, which proves that the self-adjoint part of Z- 1 is positive.

Ex 13. When A is invertible, AA* and ASA are similar:

A*A = A-IAA*A,

and therefore have the same eigenvalues. Noninvertible A can be obtained as the

limit of a sequence of invertible matrices.

Ex 14. Let u be an eigenvector of A*A, with nonzero eigenvalue:

A*Au=ru, r#0.
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Denote Au as v; the vector v is nonzero, for if Au = 0, it follows from the above
relation that u = 0.

Let A act on the above relation:

AA*Au = rAu

which can be rewritten as

AA*v = rv;

which shows that v is an eigenvector of AA`, with eigenvalue r.
A maps the eigenspace of A*A with eigenvalue r into the eigenspace of AA*; this

mapping is 1-to-1. Similarly A* maps the eigenspace of AA* into the eigenspace of
A*A in a 1-to-I fashion. This proves that these eigenspaces have the same
dimension.

Ex 15. Take Z = (o 2), a some real number; its eigenvalues are 1 and 2. But

Z+Z* =

is not positive when a > \/8-.

CHAPTER 11

Ex 1. If M, = AM, Mf = M*A* = -MA.

Then

(M*M), = M' M + M*M, = -M*AM + M*AM = 0.

Since M*M = I at t = 0, M*M = I for all t. At t = 0, detM = I, therefore det
M = 1 for all t. This proves that M(t) is a rotation.

Ex 5. The nonzero eigenvalues of a real antisymmetric matrix A are pure imaginary
and come in conjugate pairs ik and -ik. The eigenvalues of A2 are 0, -k22, -k22, so
tr A2 = -2k2. The diagonal entries of A'- are -(a2 + b2), -(a2 + c2) and
-(b2 + c22), so tr A22 = -2(a2 + b2 + c22). Therefore k = a2 + b'- + c2.

Ex 6. The eigenvalues of eA! are ea`, where a are the eigenvalues of A. Since the
eigenvalues of A are 0, ±ik, the eigenvalues of eAt are 1 and et4'. From Af = 0 we
deduce that eA'f =f; thus f is the axis of the rotation eA,. The trace of eA, is
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I + e'4" + e-'R' = 2 cos kt + 1. According to formula (4)', the angle of rotation 9 of
M = eA, satisfies 2 cos 0 + I = tr eA,. This shows that 0 = kt = a'- + b2 + c21.

0 a b 0 d e
Ex8. A= -a 0 c , B= -d 0 g ;

(-b -c 0 -e -g 0

their null vectors are

-c -g
fA = b J, fB = e

-a -d
(ad + be bg -ag

AB = - ce ad + cg ae

-cd bd be + cg

Therefore tr AB = -2(ad + be + cg), whereas the scalar product of fA and In is
cg + be + ad.

Ex 9. BA can be calculated like AB, given above. Subtracting we get

0 ec - bg -dc + ag
AB-BA= bg-ec 0 db - ae

do - ag ae - db 0

Therefore

ae - db
f A,B] = ag - do

bg - ec

We can verify that fA x fB = f A,B] by using the formula for the cross product in
Chapter 7.

CHAPTER 12

Ex 2. (a) Let {K, } be a collection of convex sets, denote their intersection by K. If x
and y belong to K, they belong to every K;. Since K; is convex, it contains the line
segment with endpoints x and y. Since this line segment belongs to all K;, it belongs
to K. This shows that K is convex.

(b) Let x and y be two points in H + K; that means that they are of the form

x=u+z, y=v+w, uandvinH, zandwinK.
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Since H is convex, au + (I - a)v belongs to H, and since K is convex
a Z + (1 - a) w belongs to H for 0 < a < 1. But then their sum

au+(1-a)v+az+(1-a)w=a(u+z)+(1 -a)(v+w)=ax+(1-a)y

belongs to H + K. This proves that H + K is convex.

Ex 6. Denote (u, v) as x. If both u and v are < 0, then x/r belongs to K for any
positive r, no matter how small. So p(x) = 0.

If 0 < v and u < v, then x/r = (r , E) belongs to K for r > v, but no smaller r.
Therefore p(x) = v. We can argue similarly in the remaining case.

Ex 7. If p(x) < 1, p(y) < 1, and 0 < a < 1, then by sub-additivity and
homogeneity of p,

P(ax + (1 - a)y) < P(ax) + P((1 - a)y) = ap(x) + (1 - a)P(y) < 1.

This shows that the set of x : p(x) < 1 is convex.
To show that the set p(x) < 1 is open we argue as follows. By subadditivity and

positive homogeneity

P(x + h) s P(x) + P(ty) = P(x) + rp(y).

Since p(x) < 1, p(x) + tp(y) < 1 for all t positive but small enough.

Ex 8.

qs(m + 1) = sup(m + 1)(x)
xinS

= sup(in(x) + 1(x)) < sup m(x) + sup 1(x) = qs(m) + qs(l).
xinS xinS xinS

Note. This is a special case of the result that the supremum of linear functions is
subadditive.

Ex 10.

q(1) = sup I(X)

xinSUT

= max{sup t(x) sup F(x)} = max{gs(1),gT(1)}.
xinS xinT

Ex 16. Suppose all pj are positive. Define

k k

)'k Pjxj/ > pj.
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k

Pj

)'k+I = k+l
yk + -4-- xk+I

We claim that all points yk belong to the convex set containing x;, ... , x,,,. This
follows inductively, since yi = xi, and yk+I lie on the line segment whose endpoints
are yk and xk+l. Finally,

m

y...=EPix/
i

Ex 19. Denote by Pi, P2i P3 the following 3 x 3 permutation matrices

1 0 0 0 1 0 0 0 1

Pi = 0 1 0, P2 = 0 0 1, P3 = 1 0 0.
0 0 1 1 0 0 0 1 0

Then

Similarly define

I I I 1
1 1 1\

3P1 +3P2+3P3=3 1 1 1) M.
1 1 I

1 0 0 0 1 0 0 0 1

P4= 0 0 1 P5= 1 0 0 P6= 0 1 0
0 1 0 0 0 1 1 0 0

Then

3P4+3P5+IP6=M.

Ex 20. A set S in Euclidean space is open if for every point x in S there is a ball
11 y - x 11 < e centered at x that belongs to S. Suppose S is convex and open; that
means that there exist positive numbers e; such that x + tei belongs to S for Itl < e;;
here e; denotes the unit vectors. Denote min e; by e; it follows that the points
x ± fee, i = 1, ... , n belong to S. Since S is convex, the convex hull of these points
belongs to S; this convex hull contains a ball of radius e/f centered at x.

The converse is obvious.
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CHAPTER 13

Ex 3. We claim that the sign of equality holds in (21). For if not, S would be
larger than s, contrary to (20); this shows that the supremum in (16) is a
maximum.

Replacing Y, y, and j by - Y, -y, -j turns the sup problem into inf, and vice versa.
This shows that the In f in (18) is a minimum.

CHAPTER 14

Ex 2. x - z = (x - y) + (y - z); apply the subadditive rule (1)ij.

Ex 5. From the definition of the Ixl,, and Ixlx norms we see that

Ixlx < lxlp < nlxl'..

Take the pth root:

Ixl«. 5 lxl, 5 n'lvlxl
>.

Since n1/n tends to I asp tends to oc, lxl = lim lxl1, follows.p-.x

Ex 6. Introduce a basis and represent the points by arrays of real numbers. Since all
norms are equivalent, it suffices to prove completeness in the lxlx norm.

Let {x } be a convergent sequence in the Ixl,,, norm. Denote the components of x,,
by x,,,j. It follows from lx - xml1,I. -> 0 that

lxnj - Xnrjl - 0

for every j. Since the real numbers are complete, it follows that

lim X" j = xj.
?I- X

Denote by x the vector with components xJ; it follows that

lim lx,, - xl, = 0.

For another proof see Theorem 3.
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CHAPTER 15

Ex 1. According to (i), ITxi < clxl. Apply this to IT(xn - x)l < clx,, - xI.

Ex 3. We have shown above that

(I-R)T"=I-R"+I

Multiply both sides on the left by S-1:

T" = S-I - S-IRn+I

Therefore

IT"-S-1I < IS-IRn+II < IS-'IIR"+II.

Since IRI < 1, IR' 1I < IRI"+' tends to zero as n -> 00,

Ex 5. Decompose n modulo in:

n=kin+r, 0<r<m.

Then

Rn = Rkm+r = (R"' )kRt

therefore

JR"'IklR`I

as n tends to oo, so does k; therefore if IR'l < 1, IR"I tends to zero as n tends to oo.
That is all that was used in the proof in Ex. 3, that T" tends in norm to S-I.

Ex 6. The components of y = Tx are

Y; _ tixi.

Since Ixil 5 Ixlx,

IYiI Itiillxlx

So b'Ix < max Ei I1ijiIXIx; (23) follows
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CHAPTER 16

Ex 1. What has to be shown is that if Px < ax, then A _> A(P). To see this consider
PT, the transpose of P; it, too, has positive entries, so by Theorem 1 it has a dominant
eigenvalue A(PT) and a corresponding nonnegative eigenvector k:

PTk = X(PT)k.

Take the scalar product of Px < Ax with k; since k is a nonnegative vector

(Px, k) < A(x, k)

The left side equals (x, PTk) = JX(PT) (x, k). Since x and k are nonnegative vectors,
(x, k) is positive, and we conclude that X (PT) < X. But P and pT have the same
eigenvalues, and therefore the largest eigenvalue A(P) of P equals the largest
eigenvalue A(PT) of PT,

Ex 2. Denote by p. the dominant eigenvalue of P", and by k the associated
eigenvector:

P"'k = pk.

Let P act on this relation:

P"k = PPk = pPk,

which shows that Pk, too, is an eigenvector of P" with eigenvalue it. Since the
dominant eigenvalue has multiplicity one, Pk = ck. Repeated application of P shows
that Pk = c"k. Therefore c' = A. From Pk = ck we deduce that c is real and
positive; therefore it is the real root All"'. Since the entries of k are positive,
c = 1z 11' is the dominant eigenvalue of P.
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APPENDIX 1

Special Determinants

There are some classes of matrices whose determinants can be expressed by compact
algebraic formulas. We give some interesting examples.

Definition. A Vandermonde matrix is a square matrix whose columns form a
geometric progression. That is, let at, ... , a be n scalars; then V(ai, ... , a,,) is the
matrix

1 1

a1 a
V(ai,...,a.) _

al-t

(1)

Theorem 1

det V(ai,... , an) = 11 (aj - a1). (2)
j>i

Proof. Using formula (16) of Chapter 5 for the determinant, we conclude that
det V is a polynomial in the a1 of degree less than or equal to n(n - 1)/2. Whenever
two of the scalars a, and aa, i O j, are equal, V has two equal columns and so its
determinant is zero; therefore, according to the factor theorem of algebra, det V is
divisible by aj - a1. It follows that det V is divisible by the product

fl(aj - a1).
j>1

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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This product has degree n(n - 1)/2, the same as the degree of det V. Therefore

det V = c JJ(aj - ai), (2)'
j>i

c,, a constant. We claim that c = 1; to see this we use the Laplace expansion (26)
of Chapter 5 for det V with respect to the last column, that is, j = n. We get in this
way an expansion of det V in powers of a,,; the coefficient of a;,-' is
det V (a i , ... , I ). On the other hand, the coefficient of an-1 on the right of (2)'
is (aj - ai). Using expression (2)' for V(aj.... we deduce that
c = 1. An explicit calculation shows that C2 = 1; hence by induction c,, = 1 for
all n, and (2) follows.

Definition. Let a, , ... , an and b1,... , b be 2n scalars. The Cauchy matrix
C(al.... ,a,,;b1,...,b,,) is the n x n matrix whose ijth element is 1/(ai +aj):

C(a, b) =

Theorem 2.

detC(a,b) _
fj>i (aj - ai)(bj - bi)

fij(ai+bj) (3)

Proof. Using formula (16) of Chapter 5 for the determinant of C(a, b), and using
the common denominator for all terms we can write

det C(a, b) =
P(a' b)

rji.j (ai + bj) '
(4)

where P(a, b) is a polynomial whose degree is less than or equal to n2 - n.
Whenever two of the scalars ai and aj are equal, the ith and jth row of C(a, b) are
equal; likewise, when bi = bj, the ith and jth column of C(a, b) are equal. In either
case, det C(a, b) = 0; therefore, by the factor theorem of algebra, the polynomial
P(a, b) is divisible by (aj - a,) and by (bj - b,), and therefore by the product

fi(aj - ai)(bj - bi).
pi

The degree of this product is n2 - n, the same as the degree of P; therefore,

P(a, b) = c JJ(aj - ai)(bj - b;), (4)'
j>i
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c,, a constant. We claim that c = 1; to see this we use the Laplace expansion for
C(a, b) with respect to the last column, j = n; the term corresponding to the element
1/(an + bn) is

detC(al,...)an-l;bl,...,b,,_,) I
an+bn.

Now set an = bn = d; we get from (4) and (4)' that

C(aii...,d;b1,...,d)

cn ! In>i (d - al) (d - b,) lln>j>f (aj - ai)(bj - bi)
2d fl,>,(d +a,)(d+b,) rjij<n(a, +bj)

From the Laplace expansion we get

C(a1i...,d;b1,...,d)

= Zd
C(al,... , an-1; b 1 , . . . , On- 1) + other terms.

Multiply both expressions by 2d and set d = 0; using (4)' to express
C(a1 i ... , an-,; b1, ... , b,,), we deduce that cn = cn_1. An explicit calculation
shows that Cl = 1, so we conclude by induction that cn = 1 for all n; (3) now follows
from (4) and (4)'.

Note: Every minor of a Cauchy matrix is a Cauchy matrix.

EXERCISE I. Let

P(S) = Xl + x2s + + xnsn-1

be a polynomial of degree less than n. Let al,. .. , an be n distinct numbers, and let
pl,... ,p,, be n arbitrary complex numbers; we wish to choose the coefficients
x1i... , xn so that

p(ai) =pi, i = 1,...,n.

This is a system of n linear equations for the n coefficients x1. Find the matrix of this
system of equations, and show that its determinant is # 0.

EXERCISE 2. Find an algebraic formula for the determinant of the matrix whose
ijth element is

1

1+aiaj;

here al, . . . , an are arbitrary scalars.
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The Pfaffian

Let A be an n x it antisymmetric matrix:

AT = -A.

We have seen in Chapter 5 that a matrix and its transpose have the same determinant.
We have also seen that the determinant of -A is (-1)" detA so

detA = det AT = det(-A) = (-1)" det A.

When n is odd, it follows that det A = 0; what can we say about the even case?
Suppose the entries of A are real; then the eigenvalues come in complex

conjugate pairs. On the other hand, according to the spectral theory of anti-self-
adjoint matrices, the eigenvalues of A are purely imaginary. It follows that the
eigenvalues of A are (-ill, ... , i).1, ... , iA,,12). Their product is (HA1)2, a
positive number; since the determinant of a matrix is the product of its eigenvalues,
we conclude that the determinant of an antisymmetric matrix of even order with real
entries is nonnegative.

Far more is true:

Theorem of Cayley. The determinant of an antisymmetric matrix A of
even order is the square of a homogeneous polynomial of degree n/2 in the

entries of A:

det A = P2.

P is called the Pfaffian.
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EXERCISE I. Verify by a calculation Cayley's theorem for n = 4.

Proof. The proof is based on the following lemma. O

Lemma 1. There is a matrix C whose entries are polynomials in the entries of
the antisymmetric matrix A such that

B = CACT (1)

is antisymmetric and tridiagonal, that is, bf = 0 for li - jl > 1. Furthermore,
detC54 0.

Proof. We construct C as a product

C, is required to have the following properties:

(i) B, = C,ACi has zeros for the last (n - 2) entries in its first column.
(ii) The first row of C, is e, = (1,0,... , 0), its first column is ei .

It follows from (ii) that C, maps ei into ei ; therefore the first column of BI, BIei ,
is CIACT of = C,Aef = C,a, where a denotes the first column of A. To satisfy (i)
we have to choose the rest of C, so that the last (n - 2) entries of C,a are zero. This
requires the last n - 2 rows of C, to be orthogonal to a. This is easily accomplished:
set the second row of CI equal to e2 = (0, 1, 0, ... , 0) the third row (0, a3, -a2,
0, ... , 0), the fourth row (0, 0, a4, -a3, 0, ... , 0), and so on, where a1,. .. , a,, are the
entries of the vector a. Clearly

detCI

is a nonzero polynomial.
We proceed recursively; we construct C2 so its first two rows are e, and e2, its first

two columns e and e2. Then the first column of B2 = C2BIC2 has zero for its last
n - 2 entires. As before, we fill in the rest of C2 so that the second column of B2 has
zeros for its last n - 3 entries. Clearly, detC2 is a nonzero polynomial.

After (n - 2) steps we end with C = C , ,_ 2 . . . C1, having the property that
B = CACT has zero entries below the first subdiagonal, that is, by = 0 for i > j + 1.
BT = CATCT = -B, that is, B is antisymmetric. It follows that its only nonzero
entries lie on the sub and super diagonals j = i + 1. Since BT = -B, b;,;_ I = -b;.;+, .
Furthermore, by construction,

detC=fldetC;#0. 13 (2)
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What is the determinant of an antisymmetric, tridiagonal matrix of even order?
Consider the 4 x 4 case

B=

0 a 0 0
-a 0 b 0

0 -b 0 c

0 0 -c 0

Its determinant det B = a2c2 is the square of a single product. The same is true in
general: the determinant of a tridiagonal antisymmetric matrix B of even order is the
square of a single product,

detB = (flb2k.z_I)2. (3)

Using the multiplicative property of determinants, and that det CT = det C, we
deduce from (1) that

det B = (det C)2 det A;

combining this with (2) and (3) we deduce that det A is the square of a rational
function in the entries of A. To conclude we need therefore Lemma 2.

Lemma 2. If a polynomial P in n variables is the square of a rational function
R, R is a polynomial.

Proof For functions of one variable this follows by elementary algebra; so we
can conclude that for each fixed variable x, R is a polynomial in x, with coefficients
from the field of rational functions in the remaining variables. It follows that there
exists a k such that the kth partial derivative of R with respect to any of the variables
is zero. From this it is easy to deduce, by induction on the number of variables, that R
is a polynomial in all variables.
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Symplectic Matrices

In Chapter 7 we studied orthogonal matrices 0; they preserve a scalar product:

(Ox, Oy) = (x, y).

Scalar products are symmetric bilinear functions; in this appendix we investigate
linear maps that preserve a nonsingular bilinear alternating function of the form
(x, Ay), A a real anti-self-adjoint matrix, det A # 0. It follows that A must be of even
order 2n. It suffices to specialize to A = J, where, in block notation,

(1)

I is the n x n unit matrix.

EXERCISE I. Prove that any real 2n x 2n anti-self-adjoint matrix A, detA # 0,
can be written in the form

A = FJFT,

J defined by (1), F some real matrix, det F 0 0.

The matrix J has the following properties, which will be used repeatedly:

J2 = -I, J-t = -J = JT.

Theorem 1. A matrix S that preserves (x, Jy):

(Sx,JSy) _ (x,Jy)

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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for all x and y, satisfies

STJS = J (4)

and conversely.

Proof. (Sx, JSy) = (x, STJSy). If this is equal to (x, Jy) for all x, y, STSJy = J,.
for all y.

A real matrix S that satisfies (4) is called a symplectic matrix. The set of all
symplectic matrices is denoted as Sp(n).

Theorem 2. (i) Symplectic matrices form a group under matrix multiplication.
(ii) If S is symplectic, so is its transpose ST.

(iii) A symplectic matrix S similar to its inverse S-1.

Proof. (i) It follows from (4) that every symplectic matrix is invertible. That
they form a group follows from (3). To verify (ii), take the inverse of (4); using (2)
we get

S-IJ(ST)-1 = J.

Multiplying by S on the left, ST on the right shows that ST satisfies (4).
To deduce (iii) multiply (4) by S-1 on the right and J-1 on the left. We get that

J-ISTJ = S-1, that is, that S-1 is similar to ST. Since ST is similar to S, (iii)
follows.

Theorem 3. Let S(t) be a differentiable function of the real variable 1, whose
values are symplectic matrices. Define G(t) by

dt S = GS.

Then G is of the form

(5)

G = JL(t), L self-adjoint. (6)

Conversely, if S(t) satisfies (5) and (6) and S(0) is symplectic, then S(t) is a family of
symplectic matrices.

Proof. For each t (4) is satisfied; differentiate it with respect to t:

(.5r)J5 + STJIS = 0.
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Multiply by S-1 on the right, (ST)-1 on the left:

(ST) -1 dt ST J + J (dt S) S-1 = 0.

We use (5) to define G:

Taking the transpose we get

Setting these into (7) gives

G= (s)s-'.

GT =
(ST)_1 d ST.

dt

GTJ + JG = 0,

from which (6) follows. F1

EXERCISE 2. Prove the converse.

(7)

We turn now to the spectrum of a symplectic matrix S. Since S is real, its complex
eigenvalues come in conjugate pairs, that is, if A is an eigenvalue, so is A. According
to part (iii) of Theorem 2, S and S-1 are similar; since similar matrices have the same
spectrum, it follows that if \ is an eigenvalue of S, so is A-' and it has the same
multiplicity. Thus the eigenvalues of a symplectic matrix S come in groups of four:

with three exceptions:

(a) When A lies on the unit circle, that is, CAI = 1, then A-1 = X, so we only
have a group of two.

(b) When A is real, . = A, so we only have a group of two.
(c) A = I or -1.

The possibility is still open that A = ±1 are simple eigenvalues of S; but this
cannot occur according to

Theorem 4. For a symplectic matrix S, A = 1 or -1 cannot be a simple
eigenvalue.

Proof. We argue indirectly: suppose, say, that A = -1 is a simple eigenvalue,
with eigenvector h:

Sh = -h. (8)
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Multiplying both sides by STJ and using (4) we get

Jh = -STJh,

311

(8)'

which shows that Jh is eigenvector of ST with eigenvalue -1.
We choose any self-adjoint, positive matrix L, and set G = JL. We define the one-

parameter family of matrices S(t) as e'"S; it satisfies

dt
S(t) = GS(t), S(0) = S. (9)

According to Theorem 3, S(t) is symplectic for all t.
If S(0) has -1 as eigenvalue of multiplicity one, then for t small, S(t) has a single

eigenvalue near -1. This eigenvalue A equals -1, for otherwise A-I would be
another eigenvalue near -1. According to Theorem 8 of Chapter 9, the eigenvector
h(t) is a differentiable function of t. Differentiating Sh = -h yields

(.Ls)h + Sh, = -h,, h, = dt h.

Using (9) and (8) we get

Gh=h,+Sh,.

Form the scalar product with Jh; using (8)' we get

(Gh, Jh) = (h,, Jh) + (Sh,, Jh) = (h,, Jh) + (h,, ST Jh)
(10)

= (h,,Jh) - (h,,Jh) = 0.

According to (6), G = JL; set this into (10); since by (2), jTj = 1, we have

(JLh, Jh) = (Lh, JTJh) = (Lh, h) = 0. (10)'

Since L was chosen to be self-adjoint and positive, h = 0, a contradiction.

EXERCISE 3. Prove that plus or minus I cannot be an eigenvalue of odd
multiplicity of a symplectic matrix.

Taking the determinant of (4), using the multiplicative property, and that
det ST = det S we deduce that (det S)2 = I so that det S = 1 or - 1. More is
true.
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Theorem S. The determinant of a symplectic matrix S is 1.

Proof. Since we already know that (det S)2 = 1, we only have to exclude the
possibility that det S is negative. The determinant of a matrix is the product of its
eigenvalues. The complex eigenvalues come in conjugate pairs; their product is
positive. The real eigenvalues 0 1, - l come in pairs A, A', and their product is
positive. According to Exercise 3, -1 is an eigenvalue of even multiplicity; so the
product of the eigenvalues is positive. 0

We remark that it can be shown that the space Sp(n) of symplectic matrices is
connected. Since (det S)2 = I and since S = I has determinant 1, it follows that
det S = I for all S in Sp(n).

Symplectic matrices first appeared in Hamiltonian mechanics, governed by
equations of the form

dtu = JHu,

where u(t) lies in l 2n, H is some smooth function in R2i, and H. is its gradient.

Definition. A nonlinear mapping u -> v is called a canonical transformation if
its Jacobian matrix 9v/au is symplectic.

Theorem 6. A canonical transformation changes every Hamiltonian equation
(11) into another equation of Hamiltonian form:

dt
v = JK,

where K(v(u)) = H(u).

EXERCISE 4. Verify Theorem 6.
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Tensor Product

For an analyst, a good way to think of the tensor product of two linear spaces is to
take one space as the space of polynomials in x of degree less than n, the other as
the polynomials in y of degree less than m. Their tensor product is the space of
polynomials in x and y, of degree less than n in x, less than in in y. A natural basis for
polynomials are the powers 1 , x, . . . , x"- t and 1, y, ... , y"'- 1, respectively; a natural
basis for polynomials in x and y is xi);i, i < n, j < M.

This sets the stage for defining the tensor product of two linear spaces U and Vas
follows: Let lei} be a basis of the linear space U, {fj} a basis for the linear space V.
Then lei Of j} is a basis for their tensor product U ® V.

It follows from this definition that

dim U ®V = (dim U)(dim V). (1)

The definition, however, is ugly, since it uses basis vectors.

EXERCISE I. Establish a natural isomorphism between tensor products defined
with respect to two pairs of distinct bases.

Happily, we can define U ® V in an invariant manner.
Take the collection of all formal sums

E ui ®vi, (2)

where ui and vi are arbitrary vectors in U and V, respectively. Clearly, these sums
form a linear space.

Sums of the form

(ut+u2)®v-u1 ®v-u2®v (3)

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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u®(VI +V2) - u®vi - u®v2 (3)'

are special cases of (2). These, and all their linear combinations, are called null sums.
Using these concepts we can give a basis-free definition of tensor product.

Definition. The tensor product U ® V of two finite-dimensional linear spaces U
and V is the quotient space of the space of all formal sums (2) modulo all null sums
(3), (3)'.

This definition is basis-free, but a little awkward. Happily, there is an elegant way
of presenting it.

Theorem 1. There is a natural isomorphism between U ® V as defined above
and Y(U', V), the space of all linear mappings of U' into V, where U' is the dual of U.

Proof. Let Eu; ® vi be a representative of an equivalence class in the quotient
space. For any l in If, assign to I the image El(u;)v; in V. Since every null sum is
mapped into zero, this mapping depends only on the equivalence class.

The mapping L,

I -+ E l(u;)v

is clearly linear and the assignment

{ u; ®v; } - L (4)

also is linear. It is not hard to show that every L in 2(U', V) is the image of some
vector in U ®V. 0

EXERCISE 2. Verify that (4) maps U ® V onto 2'(U', V).

Theorem 1 treats the spaces U and V asymmetrically. The roles of U and V can be
interchanged, leading to an isomorphism of U ® V and 2'(V', U). The dual of a map
L:U'-> V is of course a map L': V1 - U.

When U and V are equipped with real Euclidean structure, there is a natural way
to equip U ® V with Euclidean structure. As before, there are two ways of going
about it. One is to choose orthonormal bases {e;}, {J} in U and V respectively, and
declare {ei ®f } to be an orthonormal basis for U ® V. It remains to be shown that
this Euclidean structure is independent of the choice of the orthonormal bases; this is
easily done, based on the following lemma.
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Lemma 2. Let u, z be a pair of vectors in U, v, w a pair of vectors in V. Then

(u (9 v,z ®w) = (u,z)(v, w). (5)

Proof. Expand u and z in terms of the ei, v and w in terms of f j.

u = 57 aie1, z = > bkek,

v=1,cjf, w=>2d,f,.

Then

u®v=Eaicje,®f, z ®w = 1: bkd,ek ®fi;

so

(u 0 v, z (& w) _ aicjbidjj

_ (>aibi)(>cJdJ) = {u, z) (v, w). O

Take the example presented at the beginning, where V is the space of polynomials
in x of degree < n, and V is the space of polynomials in y of degree <m. Define in U
the square integral over an x-interval A as the Euclidean norm, and in V the square
integral over a y-interval B. Then the Euclidean structure in U 0 V defined by (5) is
the square integral over the rectangle A x B.

We show now how to use the representation of U 0 V as .t(U', V) to derive the
Euclidean structure in U ® V from the Euclidean structure of U and V. Here
U'= U, soU®Vis&(U,V).

Let M and L belong to £(U, V), and let L* be the adjoint of L. We define

(M,L) = trL*M. (6)

Clearly this depends bilinearly on M and L. In terms of orthonormal bases, M and L
can be expressed as matrices (mij) and (lij), and L* as the transpose (iji). Then

trL*M = Eljimji-

Setting L = M, we get

IIM112=(M,M)=Em,

consistent with our previous definition.
Complex Euclidean structures can be handled the same way.
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All of the foregoing is pretty dull stuff. To liven it up, here is a one-line proof of
Schur's peculiar theorem from Chapter 10, Theorem 7: if A = (A;j) and B = (B,j)
are positive symmetric n x n matrices then so is their entry by entry product
M = (AijB7j).

Proof. It was observed in Theorem 6 of Chapter 10 that every positive symmetric
matrix can be written as a Gram matrix:

Alj = (u;, uj), U. C U, linearly independent,

Bij = (vj, vj), v; C V, linearly independent.

Now define g; in U ® V to be u, ® v;; by (5), (g;,gj) = (u;, uj)(v;, vj) = A;jB;j.
This shows that M is a Gram matrix, therefore nonnegative.

EXERCISE 3. Show that if {u;} and {vj} are linearly independent, so are u; ® v;.
Show that My is positive.

EXERCISE 4. Let u be a twice differentiable function of xl, ... , x defined in a
neighborhood of a point p, where u has a local minimum. Let (A;j) be a symmetric,
nonnegative matrix. Show that

u
Aij (p) ? 0.

8x; axj
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Lattices

Definition. A lattice is a subset L of a linear space X over the reals with the
following properties:

(i) L is closed under addition and subtraction; that is, if x and y belong to L, so
do x + y and x - y.

(ii) L is discrete, in the sense that any bounded (as measured in any norm) set of
X contains only a finite number of points of L.

An example of a lattice in l t is the collection of points x = with
integer components xi. The basic theorem of the subject says that this example is
typical.

Theorem 1. Every lattice has an integer basis, that is, a collection of vectors in
L such that every vector in the lattice can be expressed uniquely as a linear
combination of basis vectors with integer coefficients.

Proof. The dimension of a lattice L is the dimension of the linear space it spans.
Let L be k-dimensional, and let p, .... , Pk be a basis in L for the span of L; that is,
every vector tin L can be expressed uniquely as

t = E aapi, a1 real. (1)

Consider now the subset of those vectors t in L which are of form (1) with a1 between
0 and 1:

0 < a1 < 1, j = 1,...,k. (2)
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This set is not empty, for its contains all vectors with aj = 0 or 1. Since L is discrete,
there are only a finite number of vectors t in L of this form; denote by q, that vector t
of form (1), (2) for which a, is positive and as small as possible.

EXERCISE I. Show that a, is a rational number.

Now replace p, by q, in the basis; every vector tin L can be expressed uniquely as

k

t = b,q, + b1p1, bf real.
2

(3)

We claim that b, occurring in (3) is an integer; for if not, we can subtract a suitable
integer multiple of q, from t so that the coefficient b, of q, lies strictly between
0 and 1:

0<b, < 1.

If then we substitute into (3) the representation ( 1 ) of q, in terms of p, , ... , Pk and
add or subtract suitable integer multiples of P2, ... , pk, we find that the p,
coefficient oft is positive and less than the p, coefficient of q,. This contradicts our
choice of qi.

We complete our proof by an induction on k, the dimension of the lattice.
Denote by La the subset of L consisting of those vectors t in L whose representation
of form (3), b, is zero. Clearly 4 is a sublattice of L of dimension k - 1; by
induction hypothesis La has an integer basis q2.... , qk. By (3), q, ... , qk is an
integer basis of L.

An integer basis is far from unique as is shown in the following theorem.

Theorem 2. Let L be an n-dimensional lattice in R". Let q, .... , qn and
r,, ... , rn be two integer bases of L; denote by Q and R the matrices whose columns
are q, and r;, respectively. Then

Q = MR,

where M is a unimodular matrix, that is, a matrix with integer entries whose
determinant is plus or minus 1.

EXERCISE 2. (i) Prove Theorem 2.
(ii) Show that unimodular matrices form a group under multiplication.

Definition. Let L be a lattice in a linear space X. The dual of L, denoted as L', is
the subset of the dual X' of X consisting of those vectors t; for which (t, ) is an
integer for all tin L.
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Theorem 3. (i)The dual of an n-dimensional lattice in an n-dimensional linear
space is an n-dimensional lattice.

(ii) L" = L.

EXERCISE 3. Prove Theorem 3.

EXERCISE 4. Show that L is discrete if and only if there is a positive number d
such that the ball of radius d centered at the origin contains no other point of L.
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Fast Matrix Multiplication

How many scalar multiplication are needed to form the product C of two n x n
matrices A and B? Since each entry of C is the product of a row of A with a column
of B, and since C has n2 entries, we need n3 scalar multiplication, as well as n3 - n2
additions. It was a great discovery of Volker Strassen that there is a way of
multiplying matrices that uses many fewer scalar multiplication and additions. The
crux of the idea lies in a clever way of multiplying 2 x 2 matrices:

A - (all a12

a21 a22 / ' B= (b21 b22

AB =C= CI1 C12

C21 Cn

c1I = a11b11 +a12b21, c12 =a, ib12 + a12b22, and soon. Define

I = (all + an)(bii + b22),

II = (a21 +a22)bu,

III =au(b12-b22),

IV = an(b21 - b11),

V = (a1I +a12)b22,

VI = (a2I -a,,) (b, I + b12),

VII = (a12 -an)(b2l +b22)

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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A straightforward but tedious calculation shows that the entries of the product matrix
C can be expressed as follows:

cll =I+IV-V+VII, c12=III+V,
c21 =II+IV, C22 =I+III-II+VI.

(2)

The point is that whereas the standard evaluation of the entries in the product matrix
uses two multiplications per entry, therefore a total of eight, the seven quantities in
(1) need only seven multiplications. The total number of additions and subtractions
needed in (1) and (2) is 18.

The formulas (1) and (2) in no way use the commutativity of the quantities a and
b. Therefore, (1) and (2) can be used to multiply 4 x 4 matrices by interpreting the
entries a,j and b;; as 2 x 2 block entries. Proceeding recursively in this fashion, we
can use (1) and (2) to multiply any two matrices A and B of order 2k.

How many scalar multiplications M(k) have to be carried out in this scheme? In
multiplying two square matrices of order 2k we have to perform seven
multiplications of blocks of size 2k- I x 21-'. This takes 7M(k - 1) scalar
multiplications. So

M(k) = 7M(k - 1).

Since M(O) = 1, we deduce that

M(k) = 7k = 2k log2 7 = nl0927
(3)

where n = 2k is the order of the matrices to be multiplied.
Denote by A(k) the number of scalar additions-subtractions needed to multiply

two matrices of order 2k using Strassen's algorithm. We have to perform 18 additions
and 7 multiplications of blocks of size 21-I x 21-1; the latter takes 7A(k - 1)
additions, the former 18(2k-I)2 = 9.22k-I. So altogether

A(k) = 9.22-I + 7A(k - 1).

Introduce B(k) = 7-kA(k); then the above recursion can be rewritten as

B(k) = 2 (4)+B(k- 1).

Summing with respect to k we get, since B(O) = 0,

B(k) 2 C7)l < (2)
(3) 6:
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therefore

A(k) < 6 x 7' = 6 x 2R i°s2 7 = 6nIOs2 7 (4)

Since loge 7 = 2.807 - is less than 3, the number of scalar multiplications required
in Strassen's algorithm is for n large, very much less than n3 the number of scalar
multiplications required in the standard way of multiplying matrices.

Matrices whose order is not a power of 2 can be turned into one by adjoining a
suitable number of 1 s on the diagonal.

Refinements of Strassen's idea have led to further reduction of the number of
scalar multiplications needed to multiply two matrices. It has been conjectured that
for any positive a there is an algorithm that computes the product of two n x n
matrices using cost n2+E scalar multiplication, where the contant depends on e.
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Gershgorin's Theorem

This result can be used to give very simple estimates on the location of the
eigenvalues of a matrix, crude or accurate depending on the circumstances.

Gershgorin Circle Theorem. Let A be an n x n matrix with complex entries.
Decompose it as

A = D + F, (1)

where D is the diagonal matrix equal to the diagonal of A; F has zero diagonal
entries. Denote by d, the ith diagonal entry of D, and by f, the ith row of F. Define the
circular disc C, to consist of all complex numbers z satisfying

Iz-d;I<_Vill, i=1,...,n. (2)

The 1-norm of a vector f is the sum of the absolute values of its components; see
Chapter 14. Claim: every eigenvalue of A is contained in one of the discs C,.

Proof. Let u be an eigenvector of A,

Au = Au, (3)

normalized as Jul. = 1, where the oo-norm is the maximum of the absolute value of
the components u u of u. Clearly, 1 u 1 < 1 for j and it, = 1 for some i. Writing
A = D + F in (3), the ith component can be written as di +fiu = A, which can be
rewritten as

Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
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The absolute value of the product fu is <V1 1 Jul., so

IA - diI : Vill Jul. = Vill. 0

EXERCISE. Show that if C; is disjoint from all the other Gershgorin discs, then C;
contains exactly one eigenvalue of A.

In many iterative methods for finding the eigenvalues of a matrix A, A is
transformed by a sequence of similarity transformations into Ak so that Ak tends to a
diagonal matrix. Being similar to A, each Ak has the same eigenvalues as A.
Gershgorin's theorem can be used to estimate how closely the diagonal elements of
Ak approximate the eigenvalues of A.
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The Multiplicity of Eigenvalues

The set of n x n real, self-adjoint matrices forms a linear space of dimension
N = n(n + I )/2. We have seen at the end of Chapter 9 that the set of degenerate
matrices, that is, ones with multiple eigenvalues, form a surface of codimension 2,
that is, of dimension N - 2. This explains the phenomenon of "avoided crossing,"
that is, in general, self-adjoint matrices in a one-parameter family have all distinct
eigenvalues. By the same token a two-parameter family of self-adjoint matrices
ought to have a good chance of containing a matrix with a multiple eigenvalue. In
this appendix we state and prove such a theorem about two parameter families of the
following form:

aA=bB+cC, a2+b2+c2= 1. (1)

Here A, B, C are real, self-adjoint n x n matrices, and a, b, c are real numbers.

Theorem (Lax). If n = 2(mod 4), then there exist a, b, c such that (1) is
degenerate, that is, has a multiple eigenvalue.

Proof. Denote by )V the set of all nondegenerate matrices. For any N in H denote
by k, < k2 < ... < k the eigenvalues of N arranged in increasing order and by uj
the corresponding normalized eigenvectors:

Nuj=kjuj, 11uj11=1,j=1,...,n. (2)

Note that each uj is determined only up to a factor ±1.
Let 0 < t < 27r, be a closed curve in N. If we fix uj(O), then the normalized

eigenvector uj(t) can be determined uniquely as continuous functions of t. Since for
a closed curve N(27r) = N(O),

uj(21r) = Tju(O), Tj = ±1. (3)

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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The quantities -rj, j = 1, . . . , m are functionals of the curve N(t). Clearly:
(i) Each Tj is invariant under homotopy, that is, continuous deformation in H.

(ii) For a constant curve, that is, N(t) independent of t, each Tj = 1.

N(t) = cos to + sin tB, 0 < t < 27r

is a closed curve in H. Note that N is periodic, and

N(t + a) = -N(t).

It follows that

and that

Aj(t+7r) = -An-j+1(t)

(4)

uj(t + ir) = Pjun f+1(t), (5)

where pj = ± 1. Since uj is a continuous function of t, so is pj; but since pj can only
take on discrete values, it is independent of t.

For each value of t, the eigenvectors u 1(t), ... , u (t) form an ordered basis. Since
they change continuously they retain their orientation. Thus the two ordered bases

u1(0),...,u,,(0) and ul(ir),...,un(ir) (6)

have the same orientation. By (5),

ul (Tr), ... , un(ir) = Pl un(0), ... , (0). (6)'

Reversing the order of a basis for n even is the same as n/2 transpositions. Since
each transposition reverses orientation, for n = 2(mod 4) we have an odd number of
transpositions. So in order for (6) and (6)' to have the same orientation,

n

Writing this product as

rjpj
1

n/2

[JPjP j+l = -1,

we conclude there is an index k for which

PkPn-kA l = -1. (7)
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Using (5) twice, we conclude that

uk(21r) = Pkun-k+1(1) = PkPn-k+luk(0)

327

This shows, by (3), that Tk = PkPn-k+1, and so by (7) that Tk = -1. This proves
that the curve (4) cannot be deformed continuously in H to a point. But the curve (4)
is the equator on the unit sphere a2 + b2 + c2 = 1; if all matrices of form (1)
belonged to H, the equator could be contracted on the unit sphere to a point,
contradicting Tk = -1

EXERCISE. Show that if n = 2(mod4), there are non x n real matrices A, B, C
not necessarily self-adjoint, such that all their linear combinations (1) have real and
distinct eigenvalues.

Friedland, Robbin, and Sylvester have extended the theorem to all
n f3, 4(mod 8), and have shown that it does not hold when n an 0, ±1(mod 8).

These results are of interest in the theory of hyperbolic partial differential
equations.
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The Fast Fourier Transform

In this appendix we study functions defined on a finite number of points arranged
periodically. A function on these points is a sequence of numbers, generally
complex, U1 ,. .. , un. In many applications, uk stands for the value at x = k/n of a
periodic function u(x) defined on the unit interval [0, 1]. The vector (ul, ... , un) = u
is a discrete approximation of the function u(x).

In this appendix we shall analyze the cyclic shift mapping S defined by

S(ul,...,un) = (u2,u3,...,un,ul)

The mapping S preserves the Euclidean norm

IIu1112=E1uk12;

such mappings are called unitary (see Chapter 8). According to Theorem 9 in
Chapter 8, unitary mappings have a complete set of pairwise orthogonal
eigenvectors ej, with eigenvalues Aj that are complex numbers of absolute value 1.
We shall now calculate the eigenvector and eigenvalues of 5.

From the eigenvalue equation Se = ale, we deduce that the components
(ul, ... , un) of a satisfy

u2=AuI, u3=)6u2i...,un=XUn-1, u1 =Xun.

We set ul =1l and then deduce from the first n - I equations above that

u2=A2, u3-A3a...,un= A n ,
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and from the last equation that 1 = V. This shows that the eigenvalues A are the n
roots of unity Aj = exp 2 ' j), and the corresponding eigenvectors

ej = V). (1)

Each eigenvector ek has norm I I ej I I = vl"n-.
Every vector it = (u1, ... , un) can be expressed as a linear combination of

eigenvectors:

u = > ajej.

Using the explicit expression (1) of the eigenvector, we can rewrite (2) as

uk = aj exp
(2-'riJk

.

n

(2)

(2)'

Using the orthogonality of the eigenvectors, along with their norm IIejMI = f, we
can express the coefficients aj as

1 " 2iri 1
aj = (u, ej)/n = -

( .
.uk exp - Jk (3)

n 1

J
n

It is instructive to compare formulas (2)' and (3) to the expansion of periodic
functions in terms of their Fourier series. But first we have to rewrite equation (2)' as
follows. Suppose n is odd; we rewrite the last (n - 1)/2 terms in the sum (2)' by
introducing a new index of summation I related to j by j = n -1. Then

2,ri 2iri

(-
2,riexp(,-jk) = exp -(n -1))k = exp-1k

n n n

Setting this into (2)', we can rewrite it as

(i-1)/2 12ni= aj exp ( -Jk (4)Uk

where we have reverted to denote the index of summation by j and where aj is
defined by (3). A similar formula holds when n is even.

Let u(x) be a periodic function of period 1. Its Fourier series representation is

u(x) = bj exp(27rijx), (5)
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where the Fourier coefficients are given by the formula

Ib = u x ex 2irJi'x dx.f P(- ) (6)

0

Setting x = k/n into (5) gives

u(n) k
(2Jri J.k).-P n

(5)'

The integral (6) can be approximated by a finite sum at the equidistant points
xA = k/n:

n

n

bl ,,, u - exp Jk/
\n/ \ 2n r

(6)'

Suppose u is a smooth periodic function, say d times differentiable. Then the
(n - 1)/2 section of the Fourier series (5) is an excellent approximation to u(x):

(n-I)/2
u(x) = E bjexp(2irijx) + O(n-d )

-(n- 1)/2
(7)

Similarly, the approximating sum on the right-hand side of (6)' differs by 0(n-d)
from b". It follows that if in (3) we take u,t = u(L), aj differs from bi by O(n-d).

When u is a smooth periodic function, its derivatives may be calculated by
differentiating its Fourier series term by term:

o'u(x) _ bb(2rrij)"' exp(2 r(jx).

The truncated series is an excellent approximation to r'u. It follows therefore that

C27ri
ai(2rrij),,, exp -jk

(n-I)/2 n

is an excellent approximation to 'u(k), provided that uA in (3) is taken as u(n
Therein lies the utility of the finite Fourier transform: It can be used to obtain highly
accurate approximations to derivatives of smooth periodic functions, which can then
be used to construct very accurate approximate solutions of differential equations.

On the other hand, operations such as multiplication of u by a given smooth
function can be carried out fast and accurately when u is represented by its values at
the points k/n. Since in the course of a calculation the operation of differentiation



APPENDIX 9: THE FAST FOURIER TRANSFORM 331

and multiplication may have to be carried out alternately many times, it is of greatest
importance that the finite Fourier transform, the passage from the point values
(u1.... , Uk) to the set of Fourier coefficients (a,,. . . , a,,) and its inverse, be carried
out as fast as possible. The rest of this appendix is devoted to this task.

Using formula (3), n multiplications are needed for the computation of each
Fourier coefficient aj provided that the roots of unity exp (- 2d1), . . , n1= 1, ... ,

are precomputed. Since there are n coefficients to compute, we need a total of 712
multiplications to carry out the finite Fourier transform.

It is therefore a considerable surprise that the finite Fourier transform can be
carried out performing only n log n multiplications, where the log is to base 2. Here
is how it works:

Assume that n is even. Denote the array of coefficients (a1, ... , a,,)' by A and the
array (ut, ... , by U. Then relation (3) can be written in matrix form

1

A =
n (8)

where the it x it matrix F is F;, = Wik, where w = exp(- 2 `). The colums of F are
so we can write F as

F,, _

Reorder the columns of F by first listing all of even order e2i ... , e and then the odd
ones, Denote the rearranged matrix by F,,:

r
=

Fully written out, Fr, looks like this; here we have used the facts that
W" = 1, cv"/2 = -I:

W2 W4

W4 WR

W2 W4

W4 W1

W
W2

-W ... -v 1

-W- ... -(0_1)

3

6
W 1
(,) 2

This suggests that we represent F, in 2 x 2 block form

= Fr

Bit B12

F" B21 B22) (9)
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We can immediately identify B11 and B21 as Fn/2. We claim that

B12 = DFn/2, B22 = -DFn/2,

where D is an n/2 x n/2 diagonal matrix with diagonal entries w
T o see this, note that the first r o w of B 12 can be written as w 1(w2, w4, ... ., 1)the
second row as w2(cv4, cvs, ... ,1), and so on. This shows that B12 = DFn/2; since
B22 = -B 12, the rest follows.

Rearrange the components of the vector A and U, putting first all the even ones,
followed by the odd ones:

Ur
=

UeUve.

add Ar = (Add ) .

Then, (8) can be rewritten as

AT =1FnUr.
n

Break AT and Ur into blocks; by (9):

Aeven _ 1 Fn/2 DFn/2 Uvven

Aodd) - n Fn/2 -DFn/2 Uodd

So

Aeven = n (Fn/2Ueven + DFn/2Uodd),

Aodd =
1

n (Fn/2Ueven - DFn/2Uodd).

(10)

Denote by M(n) the number of multiplications needed to calculate the vector A,
given U. Using formula (10), see that we have to apply Fn/2 to two different vectors
which takes 2 M(n/2) multiplications; we have to apply D twice, another n
multiplications, and we have to multiply by 1/n, another n multiplications. So
altogether

M(n) = 2M(n/2) + 2n. (11)

If n is a power of 2, we have similar relations between M(n/2) and M(n/4), and so on;
putting these relations together, we get

M(n) = n loge n, (12)

where loge denotes logarithm to base 2.
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There are some additional computational expenses; additions and rearrangements
of vectors. The total amount of work is 5n 1092 n flops (floating point operations).

The inverse operation, expressing uk in terms of the aI [see (2)'], is the same,
except that w is replaced by ao, and there is no division by n.

There is an interesting discussion of the history of the Fast Fourier Transform in
the 1968 Arden House Workshop.

When Cooley and Tukey's paper on the Fast Fourier Transform appeared,
Mathematical Reviews reviewed it by title only; the editors did not grasp its
importance.
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The Spectral Radius

Let X be a finite-dimensional Euclidean space, and let A be a linear mapping of X
into X. Denote by r(A) the spectral radius of A:

r(A) = max jail, (1)

where ai rangers over all eigenvalues of A. We claim that

lit IIAAIlt/j = r(A), (2)jyx

where IIA'II denotes the norm of the jth power of A.

Proof. A straightforward estimate [see inequality (48)j of Chapter 7] shows that

IIAill t/' >_ r(A).

We shall show that

lim supllA'IIt11 < r(A).

(3)

(4)

Combining (3) and (4) gives (2).
We can introduce an orthonormal basis in X, thereby turning X into C", with the

standard Euclidean norm (lxt I2 + ... + Ix512)1/2 , and A into an it x n matrix with
complex entries. We start with the Schur factorization of A: D

Theorem 1. Every square matrix A with complex entries can be factored as

A = QTQ«,

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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where Q is unitary and T is upper triangular:

ty =0 fori>j.

(5) is called a Schur factorization of A.

Proof If A is a normal matrix, then according to Theorem 8 of Chapter 8 it has a
complete set of orthogonal eigenvectors qi,... , q,,, with eigenvalues a,, ... , a,,:

Aqk = akgk (6)

Choose the qk to have norm 1, and define the matrix Q as

Q =

Since the columns of Q are pairwise orthogonal unit vectors, Q is unitary. Equations
(6) can be expressed in terms of Q as

AQ = QD, (6)'

where D is the diagonal matrix with D,tk = at. Multiplying (6)' by Q* on the right
gives a Schur factorization of A, with T = D.

For arbitrary A we argue inductively on the order n of A.
We have shown at the beginning of Chapter 6 that every n x n matrix A has at

least one eigenvalue a, possibly complex:

Aq = aq. (7)

Choose q to have norm 1, and complete it to an orthonormal basis q,, ... , q,,, q, = q,
and define the matrix U to have columns q, .... , q,,:

U =

Clearly, U is a unitary matrix, and the first column of AU is aq:

AU = (aq,c...... c,,)

The adjoint U* of U has the form

(7)'

I 9i

=

9U.
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where the row vector q; is the transpose of the column vector qj, and 41 is its complex
conjugate. Take the product of (7)' with U*; since the rows of U* are
orthogonal to qt, we get, in block notation,

U*AU = f a C ), (8)

where B is a 1 x (n - 1) matrix and C an (n - 1) x (n - 1) matrix.
By the induction hypothesis, C has a Schur factorization

C = RT1R*, (9)

where R is a unitary (n - 1) x (n - 1) matrix, and T1 an upper triangular
(n - 1) x (n - 1) matrix. Set

Q=U` 0 R);

where Q, the product of two unitary matrices, is unitary, and

Q.=(0
R*)u*.

(10)

Using (10) and (10)*, we get

Q AQ- (0 R*)U AU( 0 R). (11)

Using (8), we can write the right-hand side of (11) as

1

(0 R*)
(0

C) (0 R

Carrying out the block multiplication of the three matrices gives

a BR
0 R*CR

It follows from (9) that R*CR = T1; so we conclude from (11) that

* _ a RR
QAQ 0 T1

=T,

an upper triangular n x n matrix. Multiplying this equation by Q on the left and Q*
on the right gives the Schur factorization (5) of A.
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The Schur factorization (5) shows that A and T are similar. We have seen in
Chapter 6 that similar matrices have the same eigenvalues. Since the eigenvalues of
an upper triangular matrix are its diagonal entries, T in (5) is of the form

T=DA+S, (12)

where DA is a diagonal matrix whose diagonal entries are the eigenvalues as, ..., an
of A, and S is an upper triangular matrix whose diagonal entries are zero.

EXERCISE I. Prove that the eigenvalues of a upper triangular matrix are its
diagonal entries.

We show now how to use Schur factorization of A to obtain the estimate (3) of the
norm of N. Let D be a diagonal matrix

di 0
D p d ,

whose diagonal entries, all nonzero, will be chosen later. According to the rules of
matrix multiplication,

(D-'TD)i = tied . (13)

We choose dj = e1, where a is some positive number, and denote by DE the diagonal
matrix with diagonal entries dj = er. We denote by Te the matrix

TE = D:'TDE. (14)

According to (13), the entries of TE are to S. This shows that the diagonal entries of
TE are the same as those of T and that the off-diagonal entries are those of T,
multiplied by a positive integer power of e. We split TE into the sum of its diagonal
and off-diagonal part; we get, analogous to (12),

Te = DA + Se. (12)e

The Euclidean norm of the diagonal matrix DA is the maximum of the absolute value
of its diagonal entries:

IIDAI I = max IajI = r(A).

Since each entry of SE contains a raised to a positive integer power, for e < 1,

IISEI I < cc,
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where c is some positive number. Using the triangle inequality, we conclude that

IIT,II = IIDA+S,1I < r(A)+cc. (15)

It follows from (14) that

T = D,T,D('.

Set this in the Schur factorization (5) of A:

A = QD,TD,'Q". (16)

Denote QD, by M. Since Q is unitary, Q* = Q-', and (16) can be rewritten as

A=MT,M-'. (16)'

It follows that

Al = MT-M-'.

Using the multiplicative inequality for the matrix norm, we obtain the inequality

I IA'I I <_ I IMI I IIM-' I I I IT,I I'.

Taking the jth root, we get

IIA'II"' < m'/"IIT,II,

where m = IIMII IIM-1 II. Using the estimate (15) on the right gives

IIA'II'/' < m"i (r(A) + cc).

Now let j tend to oo; we get that

lim sup I IA''I 111'' < r(A) + cc.

Since this holds for all positive e < 1, we have

lim sup I IA'II "' < r(A),

as asserted in (4). As noted there, (4) and (3) simply (2).

EXERCISE 2. Show that the Euclidean norm of a diagonal matrix is the
maximum of the absolute value of its eigenvalues.
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Note 1. The crucial step in the argument is to show that every matrix is similar to
an upper triangular matrix. We could have appealed to the result in Chapter 6 that
every matrix is similar to a matrix in Jordan form, since matrices in Jordan form are
upper triangular. Since the proof of the Jordan form is delicate, we preferred to base
the argument on Schur factorization, whose proof is more robust.

EXERCISE 3. Prove the analogue of relation (2),

lim IA'I 'l1 = r(A), (17)j-.x

when A is a linear mapping of any finite-dimensional normed, linear space X (see
Chapters 14 and 15).

Note 2. Relation (17) holds for mappings in infinite-dimensional spaces as well.
The proof given above relies heavily on the spectral theory of linear mappings in
finite-dimensional spaces, which has no infinite-dimensional analogue. We shall
therefore sketch another approach to relation (17) that has a straightforward
extension to infinite-dimensional normed linear spaces. This approach is based on
the notion of matrix-valued analytic functions.

Definition I. Let z = x + iy be a complex variable, A(z), an n x n matrix-
valued function of z. A(z) is an analytic function of z in a domain G of the z plane if
all entries of A(z) are analytic functions of z in G.

Definition 2. X is a finite-dimensional normed linear space, and A(z) is a family
of linear mappings of X into X, depending on the complex parameter z. A(z) depends
analytically on z in a domain G if the limit

lim
A(z + h) - A(z) =

A'(z)
n-o h

exists in the sense of convergence defined in equation (16) of Chapter 15.

EXERCISE 4. Show that the two definitions are equivalent.

EXERCISE 5. Let A(z) be an analytic matrix function in a domain G, invertible at
every point of G. Show that then A-' (z), too, is an analytic matrix function in G.

EXERCISE 6. Show that the Cauchy integral theorem holds for matrix-valued
functions.

The analytic functions we shall be dealing with are resolvents. The resolvent of A
is defined as

R(z) = (zI - A)-' (18)
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for all z not an eigenvalue of A. It follows from Exercise 5 that R(z) is an analytic
function.

Theorem 2. For IzI > JAI R(z) has the expansion

0C AnR(z) = E . (19)
0

Proof. By the multiplicative estimate IA" < IAA", it follows that the series on the
right-hand of (19) converges for IzI > JAI.

Multiply (19) by (zI - A); term-by-term multiplication gives I on the right-hand
side. This proves that (19) is the inverse of (zI - A).

Multiply (19) by z' and integrate it over any circle IzI = s > IAA. On the right-
hand side we integrate term by term; only the jth integral is # 0, so we get

I R(z)z' dz = 27riA'. (20)

I:1=S

Since R(z) is an analytic function outside the spectrum of A, we can, according to
Exercise 6, deform the circle of integration to any circle of radius
.s=r(A)+e,e>0:

J R(z)z' dz = 27riAA. (20)'

11-1=r(A)+c

To estimate the norm of A! from its integral representation (20)', we rewrite the dz
integration in terms of dO integration, where 0 is the polar angle, z = se'0 and
dz = sie'0 d6:

27r

Ai = 1 R(se10)ss+Ie'o(i+')dO.
27r

0

(21)

The norm of an integral of linear maps is bounded by the maximum of the integrand
times the length of the interval of integration. Since R(z) is an analytic function, it is
continuous on the circle IzI = r(A) + e, e > 0; denote the maximum of IR(z)I on
this circle by c(c). We can then estimate the norm of A' from its integral
representation (21), with s = r(A) + e, as follows:

IAII < (r(A) + er+'c(e)
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Take the jth root:

jAJj"i < m(f)"j(r(A) + f), (22)

where m(f) = (r(A) + f) c(e). Let j tend to oc in (22); we get

lim sup jA'I" < r(A) + f.

Since this holds for all positive f, no matter how small,

lim sup IAAI ""i < r(A).

On the other hand, analogously to (3),

jA'I > r(AY

for any norm. Taking the jth gives

IA'I"' > r(A).

Combining this with (21), we deduce (17).

This proof nowhere uses the finite dimensionality of the normed linear space on
which A acts.
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The Lorentz Group

1. In classical mechanics, particles and bodies are located in absolute, motionless
space equipped with Euclidean structure. Motion of particles is described by giving
their position in absolute space as a function of an absolute time.

In the relativistic description, there is no absolute space and time, because space
and time are inseparable. The speed of light is the same in two coordinate systems
moving with constant velocity with respect to each other. This can be expressed by
saying that the Minkowski metric t2 - x2 - y2 - z2 is the same in both coordinate
systems-here we have taken the speed of light to have the numerical value 1.

A linear transformation of four-dimensional space-time that preserves the
quadratic form t2 - x2 - y2 - z2 is called a Lorentz transformation. In this chapter
we shall investigate their properties.

We start with the slightly simpler (2 + 1)-dimensional space-time. Denote by u
the space-time vector (t, x, and denote by M the matrix

1 0 0
M= 0 -1 0 (1)

0 0 -1

Clearly,

t2 - x2 - y2 = (u, Mu), (2)

where (,) denotes the standard scalar product in l .

The condition that the Lorentz transformation L preserve the quadratic form (2) is
that for all u,

(Lu, MLu) = (u, Mu)

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
Copyright 2007 John Wiley & Sons, Inc.

(3)
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Since this holds for all a, v, and u + v, it follows that

(Lu, MLv) = (u, Mv)

343

(3)'

for all pairs u, v. The left-hand side can be rewritten as (u, L'MLv); since (3)' holds
for all u and v, we conclude that

L'ML = M. (4)

Take the determinant of (4); using the multiplicative property of determinants,
along with the fact that det M = 1, we get

(det L') (del L) = (det L)2 = 1.

This shows that every Lorentz transformation is invertible.

EXERCISE I. Show that if L is a Lorentz transformation, so is U.

(4)'

The Lorentz transformations form a group. For clearly, the composite of two
transformations that preserve the quadratic form (2) also preserves (2). Similarly, if
L preserves (2), so does its inverse.

A 3 x 3 matrix has nine elements. Both sides of (3)' are symmetric 3 x 3
matrices; their equality imposes six conditions on the entries of L. Therefore,
roughly speaking, the Lorentz group forms a three-dimensional manifold.

Definition. The forward light cone (flc) is the set of points in space-time for
which t2 - x2 - y2 is positive, and t is positive. The backward light cone (blc)
consists of points for which t2 - x2 - y2 is positive and t is negative.

Theorem 1. A Lorentz transformation L either maps each light cone onto itself
or onto each other.

Proof. Take any point, say (1, 0, 0)' in the flc; since L preserves the Minkowski
metric (2), the image of this point belongs to either the forward or backward light
cone, say the flc. We claim that then L maps every point a in the tic into the flc. For
suppose on the contrary that some point u in the flc is mapped by L into the blc.
Consider the interval connecting (1. 0, 0)' and u; there would be some point v on this
interval that is mapped by L into a point w whose t-component is zero. For such a
point w, (w, Mw) < 0. Since all point v on this interval lies in the flc (v, Mv) > v. But
w = Lv, a contradiction to (3).

We show next that every point z in the flc is the image of some point a in the flc.
For, since L is invertible, z = Lu for some u; since L preserves the quadratic form
(2), u belongs to one of the light cones. If it were the backward light cone. then by the
aigument given above L would map all points of the blc into the flc. But L maps
(-1, 0, 0)' into -L(l, 0, 0)', which lies in the blc, a contradiction.



APPENDIX I I: THE LORENTZ GROUP

If L maps (1, 0, 0)' into the blc, we argue analogously; this completes the proof of
Theorem 1.

Definition. It follows from (4)' that det L = ± 1. The Lorentz transformations
that map the tlc onto itself, and for which det L = 1, form the proper Lorentz group.

Theorem 2. Suppose L belongs to the proper Lorentz group, and maps the point
e = (1, 0, 0) onto itself. Then L is rotation around the t axis.

Proof. Le = e implies that the first column of L is (1, 0, 0)'. According to (4),
L'ML = M; since Me = e, L'e = e; therefore the first column of L' is (1, 0, 0)'. So
the first row of L is (1, 0, 0). Thus L has the form

l 0 0

L= 0

0 R

Since L preserves the Minkowski metric, M is an isometry. Since detL= 1,
detM = 1; so R is a rotation.

EXERCISE 2. Show that Lorentz transformations preserve solutions of the wave
equation. That is, if f (t, x, y) satisfies

then f(L(t,x, y)) satisfies the same equation.

Next we shall present an explicit description of proper Lorentz transformations.
Given any point u = (t, x, y)', we represent it by the 2 x 2 symmetric matrix U:

yU_

-
(t-x

y t+x

Clearly, U is real and symmetric and

detU=t'--x2-y' trU=2t.

(5)

(6)

Let W be any 2 x 2 real matrix whose determinant equals 1. Define the 2 x 2 matrix
V by

WUW' = V. (7)

Clearly, V is real and symmetric and

det V = (det W) (det U) (det W') = det U, (8)
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since we have assumed that det W = 1. Denote the entries of V as

r' - x' y'
V - y' r' + x'

(9)

Given W, (5), (7), and (9) defines a linear transformation (t,x,y) - (1', X', Y). It
follows from (6) and (8) that t2 - x2 - y2 = t12 - x12 - y'2. That is, each W
generates a Lorentz transformation. We denote it by Lw. Clearly, W and -W
generate the same Lorentz transformation. Conversely,

EXERCISE 3. Show that if W and Z generate the same Lorentz transformation,
then Z = W or Z = -W.

The 2 x 2 matrices W with real entries and determinant 1 form a group under
matrix multiplication, called the special linear group of order 2 over the reals. This
group is denoted as SL(2, R).

EXERCISE 4. Show that SL(2, R) is connected-that is, that every W in SL(2, R)
can be deformed continuously within SL(2, l) into I.

Formulas (5), (7), and (9) define a two-to-one mapping of SL(2, 08) into the
(2 + 1)-dimensional Lorentz group. This mapping is a homomorphism, that is,

Lwz = LwLz.

EXERCISE 5. Verify (10).

(10)

Theorem 3. (a) For W in SL(2, R), Lw belongs to the proper Lorentz group.
(b) Given any two points u and v in the fic, satisfying (u, Mu) = (v, Mv), there is

a Y in SL(2, lJ) such that Lyu = v.
(c) If Z is a rotation, Lz is a rotation around the t axis.

Proof. (a) A symmetric matrix U representing a point it = (t, x, y)' in the flc is
positive, and the converse is also true. For according to (6), det U = t2 - x'- - y2,
tr U = 2t, and the positivity of both is equivalent to the positivity of the symmetric
matrix U.

By definitions (7) and (9), the matrix V representing v = Lwu is V = WUW';
clearly, if U is a positive symmetric matrix, so is V. This shows that Lw, maps the flc
into the fic.

According to (4)', the determinant of the Lorentz transformation Lw, is 1 or -1.
When W is the identity I, Lw, is the identity, and so detLI = 1. During a continuous
deformation of W, det Lw changes continuously, so it doesn't change at all.
Therefore, det Lw = 1 for all W that can be deformed continuously into I. According
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to Exercise 4, all W can be deformed into I; this shows that for all W, Lw is a proper
Lorentz transformation.

(b) We shall show that given any v in the flc, there is a W in SL(2, l8) such that
Lw maps to = t(1, 0, 0)' into v, where t is the positive square root of (v, Mv). The
matrix representing e is I; the matrix representing Lwte is WtIW' = tWW'. So we
have to choose W so that tWW' = V, where V represents v. Since t2 = (V.. MV) =
det V and since by (a) V is positive, we can satisfy the equation for W by setting Was
the positive square root of t-1 V.

Similarly, for any other point u in the flc for which (u, Mu) = (v, Mv), there is a Z
in SL(2, u8), for which Lzte = u. Then LwLZ' maps u into v. Since W -+ Lw is a
homomorphism, LwLZ ' = L.

(c) Suppose that Z is a rotation in 1f82; then Z'Z = I. Using the commutativity of
trace, we get from V = ZUZ' that

trV = tr ZUZ' = trUZ'Z = trU

for all U. For U of form (5) and V of form (9), trU = 2t, trV = 2t', sot = t' for al l U.
Since t2 - x2 - y2 = t'2 - a12 - y'2, it follows that Lz maps (t, 0, 0) into itself. We
appeal to Theorem 2 to conclude that Lz is rotation around the t axis.

EXERCISE 6. Show that if Z is rotation by angle 0, Lz is rotation by angle 20.

Theorem 4. Every proper Lorentz transformation L is of the form LY Y in
SL(2, R).

Proof. Denote by u the image of e = (1,0,0) under L:

Le=u.

Since e lies in the flc, so does u. According to part (b) of Theorem 3, Lwe = u for
some W in SL(2, R). Therefore LWILe = e; according to Theorem 2, LW'L is
rotation around the t axis. By part (c) of Theorem 3, along with Exercise 6, there
is a rotation Z in SL(2, J) such that Lw L = Lz; it follows that
L = LwLz = Lwz.

EXERCISE 7. Show that a symmetric 2 x 2 matrix is positive iff its trace and
determinant are both positive.

EXERCISE 8. (a) Let L(s) be a one-parameter family of Lorentz transformations
that depends differentiably on s. Show that L(s) satisfies a differential equation of the
form

a,L = AML, (11)

where A(s) is anti-self-adjoint.
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(b) Let A(s) be a continuous function whose values are anti-self-adjoint
matrices. Show that every solution L(s) of (11), whose initial value is I, belongs to
the proper Lorentz group.

2. In this section we shall outline a construction of a model of non-Euclidean
geometry using the Lorentz group. By a geometry of the plane, we mean a set of
elements, called points, with the following structures:

(i) a collection of subsets called lines.
(ii) a group of motions that map the plane onto itself, and map lines into lines.

(iii) Angles of intersecting lines.

(iv) Distance of pairs of points.

All axioms of Euclidean geometry, except the parallel postulate, have to be satisfied.

Definition. The model, denoted as I-I, consists of the points u located in the
positive half of the hyperboloid

(u, Mu) = t2 - X - y2 = 1, t > 0. (12)

The lines are intersection of 0-0 with planes through the origin (u,p) = 0, where
p satisfies

(p, Mp) < 0. (13)

The group of motions is the proper Lorentz group.

Theorem 5. (a) Every plane (u, p) = 0 that satisfies (13) has a nonempty
intersection with H.

(b) Any two distinct points of 0-0 lie on one and only one line.
(c) Every proper Lorentz transformation maps lines onto lines.

Proof. (a) Set p = (s, a, b); condition (13) means that s2 < a2 + b2. The point
u = (a2 + b2, -as, -bs) satisfies (u, p) = 0. We claim that it belongs to the tic; for

(u, Mu) = (a2 + b2)2 - (a2 + b2)s2

is positive, and so is a2 + b2. It follow that u/k, where k is the positive square root of
(u, Mu), belongs to H.

(b) Conversely, suppose that the plane (u, p) = 0, p = (s, a, b), contains a point
u = (t, x, y) that belongs to the tic; then p satisfies (13). For suppose not-that is,
s2 > a22 + b2. Since u = (t, x, y) belongs to the fic, we have t2 > x2 + y2.
Multiplying these inequalities gives

s2t2 > (a2 + b2)(x2 + y2).
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Since (u,p) = 0,

St = -(ax + by)

Applying the Schwarz inequality on the right gives the opposite of the previous
inequality, a contradictions.

Given two distinct points u and v in 1-0, there is a unique p, except for a constant
multiple, that satisfies (u, p) = 0, (v, p) = 0. According to what we have shown
above, p satisfies (13) when u or v belongs to H.

(c) Take the line consisting of all points u in 0-0 that satisfy (u, p) = 0, where p is
a given vector, (p, Mp) < 0. Let L be a proper Lorentz transformation; the inverse
image of the line under L consists of all points v such that u = Lv. These points v
satisfy (Lv,p) = (v, Lp) = 0. We claim that the points v lie on H, and that q = Lp
satisfies (q, Mq) < 0. Both of these assertions follow from the properties of proper
Lorentz transformations.

Next we verify that our geometry in non-Euclidean. Take all lines (u,p) = 0
through the point u = (1, 0, 0). Clearly, such a p is of the form p = (0, a, b), and the
points u = (t, x, y) on the line (u, p) = 0 satisfy

ax + by = 0. (14)

T a k e q = (l , 1, 1); points u = (t, x, y) on the line (u, q) = 0 satisfy t + x + y = 0.
For such a point u,

(u, Mu) = t2 - x2 - y2 = (x + y)2 - x2 - y2 = 2xv. (15)

The points u on the intersection of the two lines satisfy both (u,p) = 0
and (u, q) = 0. If a and b are of the same sign, it follows from (14) that x and y
are of the opposite sign; it follows from (15) that such a u does not lie in the
flc.

Thus there are infinitely many lines through the point (1, 0, 0) that do not intersect
the line t + x + y = 0 in 0-0; this violates the parallel postulate of Euclidean
geometry.

In our geometry, the proper Lorentz transformation are the analogues of
Euclidean motion translations combined with rotations. Both objects form a three-
parameter family.

We turn now to the definition of distance in our geometry. Take two nearby
points in Oil, denoted as (t, x, y) and (t + dt, x + dx, y + dy). Their image under
a proper Lorentz transformation L is (t', x, y') and (t' + dt', x' + dx', y' + dy').
Since L is linear, (dt', dx', dy') is the image of (dt, dx, dy) under L, and
therefore

dt2 - dxi2 - dye = dt2 - dx2 - dye,
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an invariant quadratic form. Since for points of 0-0, t2 - x2 - yz = 1, we have
dt = i dx + ? dy. So we choose as invariant metric

dx'- + dyz - dtz =
I

rzy
z

dxz + I
z

dyz -
2l y

dxdy. (16)

Once we have a metric, we can define the angle between lines at their point of
intersection using the metric (16).

3. In this section we shall briefly outline the theory of Lorentz transformations in
(3+1)-dimensional space-time. The details of the results and their proofs are
analogous to those described in Section 1.

The Minkowski metric in 3 + I dimensions is t2 - xz - y' - zz, and a Lorentz
transformation is a linear map that preserves this metric. The Minkowski metric can
be expressed, analogously with (2), as

(u, Mu), (17)

where M is the 4 x 4 diagonal matrix whose diagonal entries are 1, -1, -1, and -1,
and u denotes a point (t, x, y, z)' in (3 + 1)-dimensional space-time. The forward
light cone is defined, as before, as the set of points u for which (u, Mu) > 0 and
t>0.

A Lorentz transformation is represented by a matrix L that satisfies the four-
dimensional analogue of equation (4):

L'ML = M. (18)

A proper Lorentz transformation is one that maps the flc onto itself and
whose determinant det L equals 1. The proper Lorentz transformations form a
group.

Just as in the (2 + 1)-dimensional case, proper Lorentz transformations in 3 + 1
space can be described explicitly. We start by representing vectors u = (t, x, y, z)' in
3 + I space by complex-valued self-adjoint 2 x 2 matrices

U= (t-x y+iz)
y - iz t +x J (19)

The Minkowski metric of it can be expressed as

tz - xz - yz - zz = det U. (20)

Let W be any complex-valued 2 x 2 matrix of determinant 1. Define the 2 x 2
matrix V by

V = WUW*, (21)
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where W* is the adjoint of W, and U is defined by (19). Clearly, V is self-adjoint, so it
can be written as

V= r'-x, y'+iz' (22)
,Y -iz' t'+X'

given W, (19), (21), and (22) define a linear map (t, x, y, z) (t', x', y',
z'). Take the

determinant of (21):

detV = (detW)(detU)(detW*).

Using (20), (20)', and det W = 1, it follows that

t2-x2-y2-Z2=(2-X'2-y'2-Z12.

This shows that each W generates a Lorentz transformation. We denote it as Lw.
The complex-valued 2 x 2 matrices of determinant 1 form a group denoted as

SL(2, Q.

Theorem 6. (a) For every W in SL(2, C), Lw defined above is a proper Lorentz
transformation.

(b) The mapping W -> Lw is a homomorphic map of SL(2, C) onto the proper
Lorentz group. This mapping is 2 to 1.

We leave it to the reader to prove this theorem using the techniques developed in
Section 1.

4. In this section we shall establish a relation between the group SU(2, C) of 2 x 2
unitary matrices and SO(3, 1:8), the group of rotations in P3.

We represent a point (x, y, z)' of R3 by the 2 x 2 matrix

x y+iz
Y - iz -x = U. (23)

Clearly,

- det U = x2 + y2 + z2. (24)

The matrices U are 2 x 2 self-adjoint matrices, trace of U = 0.

Theorem 7. Z is a 2 x 2 unitary matrix of determinant 1, and U is as above.
Then

V = ZUZ' (25)
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is

(i) self-adjoint,
(ii) det V = det U,
(iii) tr V = 0.

Proof. (i) is clearly true. To see (ii) take the determinant of (25). To deduce (iii),
we use the commutativity of trace-that is, that tr AB = tr BA. Thus

trV =trZUZ* =trUZ*Z=trU=0;

here we have used the fact that Z*Z = I for Z unitary.

Combining (23), (24), and (25) shows that the mapping U -> V defined by (25)
engenders an orthogonal transformation of W. We denote it as OZ.

The mapping defined by (25) is analogous to the mapping of SL(2, C) onto the
(3 + 1)-dimensional proper Lorentz group described in Section 3.

Theorem 8. The mapping Z -> Oz defined above is a homomorphic map of
SU(2, C) onto SO(3, R). This mapping is 2 to 1.

We leave it to the reader to prove this theorem.

We shall now show how to use this representation of rotation in l to rederive
Euler's theorem (see Section 1 of Chapter 11) that every rotation in three space is
around a uniquely defined axis. Representing the rotation as in (25), we have to show
that given any 2 x 2 unitary matrix, detZ = 1, there is a self-adjoint 2 x 2 matrix U,
tr U = 0, that satisfies

ZUZ* = U.

Multiplying this relation by Z on the right, we get ZU = UZ. To find a U that
commutes with Z, we use the eigenvector e and f of Z. They are orthogonal and
satisfy, since det Z = 1,

Ze=.ke, Zf=Xf, IXI=1.

Define U by setting

Ue = e, Uf = f .

Clearly, U is self-adjoint; since its eigenvalues are 1 and -1, tr U = 0. The axis of
rotation consists of all real multiples of U.



APPENDIX 12

Compactness of the Unit Ball

In this Appendix we shall present examples of Euclidean spaces X whose unit ball is
compact-that is, where every sequence {xk} of vectors in X, 11 xk 11 < 1, has a
convergent subsequence. According to Theorem 17 of Chapter 7, such spaces are
finite dimensional. Thus compactness of the unit ball is an important criterion for
finite dimensionality.

Let G be a bounded domain in the x, y plane whose boundary is smooth. Let
u(x, ),) be a twice differentiable function that satisfies in G the partial differential
equation

au+Au=0,

where a is a positive constant, and A is the Laplace operator:

Au = u. + uXY;

(1)

(2)

here subscripts x, y denote partial derivatives with respect to these variables.
Denote by S the set of solutions of equation (1) which in addition are zero on the

boundary of G:

u(x,y) = 0 for(x,y)in 8G.

Clearly, the set S of such solutions form a linear space.
We define for u in S the norm

(3)

IIu1122 = Ju2(x,y). (4)
G

Linear Algebra and Its Applications. Second Edition, by Peter D. Lax
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Theorem 1. The unit ball in S is compact.

Proof. Multiply equation (1) by u and integrate over G:

353

0 =
J

(au2 + uAu) dxdy. (5)

G

Using the definition (2) of A, we can integrate the second term by parts:

Ju(uxx+uyy)ddY=_J(u+u)drdY (6)

G

There are no boundary terms resulting from the integration by parts because u is zero
on the boundary of G. Setting (6) into (5), we get

J(u+u)dxdy=aJu2dxdy. (7)

G G

We appeal now to a compactness criterion due to Franz Rellich:

Theorem 2. (Rellich) Let R be a set of smooth functions in a bounded domain
G with smooth boundary whose square integrals, along with the square integrals of
their first derivatives over G, is uniformly bounded:

J U2<m, (8)

G

Every sequence of functions in R contains a subsequence that converges in the
square integral norm.

The unit ball 11 u 11< 1 in S has the properties (8), since according to inequality
(7) the square integral of their first derivatives is bounded by a. So Theorem 1 is a
consequence of Theorem 2.

It follows therefore from Theorem 17 of Chapter 7 that the solutions of
equation (1) that satisfy the boundary conditions (3) form a finite-dimensional
space.

Theorem 2, and therefore Theorem 1, is not restricted to functions of two
variables or to the specific differential equation (1).

The proof of Rellich's compactness criterion would take us too far afield. But the
analogous result where the square integral norm is replaced by the maximum norm is
simpler.
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Theorem 3. Let G be a bounded domain with a smooth boundary, and let D be a
set of functions in G whose values and the values of their first derivatives are
uniformly bounded in G by a common bound in. Every sequence of functions in D
contains a subsequence that converges in the maximum norm.

EXERCISE I. (i) Show that a set of functions whose first derivatives are
uniformly bounded in G are equicontinuous in G.
(ii) Use (i) and the Arzela-Ascoli theorem to prove Theorem 3.
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A Characterization of Commutators

We shall prove the following result.

Theorem 1. An n x n matrix X is the commutator of two n x n matrices A
and B,

X = AB - BA,

iff the trace of X is zero.

(1)

Proof We have shown in Theorem 7 of Chapter 5 that trace is commutative-
that is, that

tr AB = tr BA.

It follows that for X of form (1), tr X = 0. We show now the converse. i]

Lemma 2. Every matrix X all of whose diagonal entries are zero can be
represented as a commutator.

Proof We shall construct explicitly a pair of matrices A and B so that (1) holds.
We choose arbitrarily n distinct numbers at, ... , a,, and define A to be the diagonal
matrix with diagonal entries a;:

1 0 for i#j,
ai for i =j.

We define B as

X;j
f

Bid= a; - aj
or t Ti,

anything for i = j.
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Then for i # j

(AB - a;Bij - BJjaj

while

This verifies (1).

= (a1 - aj)B;j = X;j,

(AB - BA)r; = a;B1, - B, a1 = 0.

To complete the proof of Theorem 9 we make use of the observation that if X can
be represented as a commutator, so can any matrix similar to X. This can be seen
formally by multiplying equation (1) by S on the left and S-' on the right:

SXS-' = SABS-' - SBAS-'

= (SAS-')(SBS-) - (SBS-')(SAS-' ).

Conceptually, we are using the observation that similar matrices represent the same
mapping but in different coordinate systems.

Lemma 3. Every matrix X whose trace is zero is similar to a matrix all whose
diagonal entries are zero.

Proof. Suppose not all diagonal entries of X are zero, say x,, 0. Then, since
tr X = 0, there must be another diagonal entry, say x22, that is neither zero nor equal
to x,,. Therefore the 2 x 2 minor in the upper left corner of X,

(Xii X12
= Y,

x2 x221

is not a multiple of the identity. Therefore there is a vector h with two components
such that Yh is not a multiple of h. We introduce now h and Yh as new basis in 082;
with respect to this basis Y is represented by a matrix whose first diagonal element
is zero.

Continuing in this fashion we make changes of variables in two-dimensional
subspaces that introduce a new zero on the diagonal of the matrix representing X,
without distroying any of the zeros that are already there, until there are n - 1
zeros on the diagonal. But since trX = 0, the remaining diagonal element is
zero too.

Combining Lemma 2 and Lemma 3 gives Theorem 1.
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Liapunov's Theorem

In this Appendix we give a far-reaching extension of Theorem 20 in Chapter 10. We
start by replacing Z in that result by its negative, W = -Z,

Theorem 1. Let W be a mapping of a finite-dimensional Euclidean space into
itself whose self-adjoint part is negative:

W+W* <0. (1)

Then the eigenvalues of W have negative real part.

This can be proved the same way as Theorem 20 was in Chapter 10. We state now
a generalization of this result.

Theorem 2. Let W be a mapping of a finite-dimensional Euclidean space X into
itself. Let G be a positive self-adjoint map of X into itself that satisfies the inequality

GW + W*G < 0. (2)

Then the eigenvalues of W have negative real part.

Proof Let h be an eigenvector of W, where w is the corresponding eigenvalue:

Wh = wh. (3)

Let the left-hand side of (2) act on h, and take the scalar product with h; according
to (2),

((GW + W"G)h, h) < 0. (4)
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We can rewrite this as

(GWh, h) + (Gh, Wh) < 0.

Using the eigenvalue equation (3), this can be restated as

x(Gh, h) + .(Gh, h) < 0.

We have assumed that G is positive; this means that the quadratic form (Gh, h) is
positive. So we conclude that

A theorem of Liapunov says that the converse of Theorem 2 holds:

Theorem 3 (Liapunov). Let W be a mapping of a finite-dimensional Euclidean
space X into itself, whose eigenvalues have negative real part. Then there exists a
positive self-adjoint mapping G such that inequality (2),

GW + W*G < 0, (2)

holds.

Proof. We recall from Chapter 9 the definition of the exponential of a matrix:

Wk00

Eew
V!

0

(5)

According to Exercise 7 there, the eigenvalues of ew are the exponentials of the
eigenvalue of W.

Let t be any real number. The eigenvalues of ew` are e"'', where w is an eigenvalue
of W.

Lemma 4. If the eigenvalues of W have negative real part, Iewt I tends to zero
at an exponential rate as t -> +oo.

Proof. According to Theorem 18 of Chapter 7, whose proof appears in Appendix
10, for any mapping A of a finite-dimensional Euclidean space X into itself,

lim I I AA II'll= r(A), (6)

where r(A) is the spectral radius of A. We apply this to A = ew. By assumption, the
eigenvalues w of W have negative real part. It follows that the eigenvalues of ew,
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which are of the form a"', are less than I in absolute value. But then the spectral
radius of ew, the maximum of all a", is also less than 1:

r(ew) < 1.

We conclude from (6) applied to A = ew that

I I el I I < (r(ew) + - E

(7)

(8)

where a tends to zero as j oo. It follows from (7) and (8) that Ilew`II decays
exponentially as t oc through integer values.

For t not an integer, we decompose t as t = j +f, where j is an integer and f is
between 0 and 1, and we factor ew' as

ew` = ewjewf.

So

1 1 ewr 11 <_ 11 el 1I 11 ewf I I (9)

To estimate I I ewf I I we replace in (5) W by Wf,

ewf =

x Wifk

T! '

0

and apply the additive and multiplicative estimates for the norm of a matrix:

X,

IIewf II <_ EIIWkIIJ /^!
0

=ell w'llf
k!

Since f lies between 0 and 1,

ellwllf < ellw'll. (10)

We can use (8) and (10) to estimate the right-hand side of (9); using j = t - f, we
get

Ilewr II < (r+e)`-'elIw1l (11)

where a tends to zero as t -p oo. According to (7), r = r(ew) < 1; thus it follows from
(11) that I I ew' I I decays to zero at an exponential rate as t tends to oo.
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The adjoint of e" is ev". Since adjoint mappings have the same norm, it follows
from Lemma 4 that I dew-' I I tends to zero at an exponential rate as t -r cc.

We are now ready to prove Theorem 3 by writing down an explicit formula for G:

00

G = J ew"ew`dt, (12)

0

and verifying that it has the properties required in Theorem 3. But first a word about
integrals of functions whose values are mappings:

JA(t)df. (13)

a

There are two ways of defining integrals of form (13), where A(t) is a continuous
function of t.

Definition 1. Express A(t) as a matrix (a;t(t)) with respect to some basis. Each
of the entries aj(t) is a continuous scalar-valued function, real or complex, whose
integral is well-defined in calculus.

Definition 2. Form approximating sums

EA(tj)JAjJ; (14)

their limit as the subdivision [a, b] = uAj is refined is the integral (13).

EXERCISE I. Show that the sums (14) tend to a limit as the size of the
subintervals Aj tends to zero. (Hint: Imitate the proof for the scalar case.)

EXERCISE 2. Show that the two definitions are equivalent.

Note. The advantage of Definition 2 is that it can be carried over to infinite-
dimensional normed linear spaces.

The integral (12) is over an infinite interval. We define it, as in the scalar case, as
the limit of the integral over [0, T] as T tends to oo.

EXERCISE 3. Show, using Lemma 4, that for the integral (12)

T-aoo

T

lim
J

ev"`ew'dt

0

exists.
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We show now that G, as defined by (12), has the three properties required in
Theorem 3:

(i) G is self-adjoint.
(ii) G is positive.

(iii) GW + W*G is negative.

To show (i), we note that the adjoint of a mapping defined by an integral of the form
(13) is

b

JA.(i) dt,

(t

It follows that if the integrand A(t) is self-adjoint for each value of t, then so is the
integral (13). Since the integrand in (12) is self-adjoins, so is the integral G. as
asserted in (i).

To show (ii). we make use of the observation that for an integral of form (13) and
for any vector h,

n

(h, JA(t)dth) =
J

(h. A(t)h) dt.

It follows that if the integrand A(t) is self-adjoint and positive, so is the integral (13).
Since the integrand in (12) is self-adjoint and positive,

(h, ewth)
ewth 112 > 0,

so is the integral G. as asserted in (ii). To prove (iii), we apply the factors W and W'
under the integral sign:

Xr

OW + W'G =
J

(ew.`ew'tW + W'ew"sew') dt. (15)

0

Next we observe that the integrand on the right is a derivative:

Y,
ew rewr

To see this, we use the rule for differentiating the product of and e'':

d ewr + d ewr
dt (Y,

(16)

(17)



362 APPENDIX 14: LIAPUNOV'S THEOREM

We combine this with the rule for differentiating exponential functions (see
Theorem 5 of Chapter 9):

ewt = ewt W, d ew' = ew,t W` - W'ew..'.
dt

Setting these into (17) shows that (16) is indeed the integrand in (15):

x
GW + W'G = f (15)'

0

We apply now the fundamental theorem of calculus to evaluate the integral on the
right of (15)' as

ew-te% t I'
0

Thus we have

GW + W"G = -1,

a negative self-adjoint mapping, as claimed in (iii). This completes the proof of
Theorem 3.

The proof, and therefore the theorem, holds in infinite-dimensional Euclidean
spaces.
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The Jordan Canonical Form

In this appendix we present a proof of the converse part of Theorem 12 in Chapter 6:

Theorem 1. Let A and B be a pair of n x n matrices with the following
properties.

(i) A and B have the same eigenvalues ci , ... , ck.
(ii) The dimension of the nullspaces

N. (ci) = nullspace of (A - cjI)'

and

Mm(cj) = nullspace of (B - ccI)m

are equal for all c1 and all m:

dimNm(cj) = dimMm(cj).

Then A and B are similar.

(1)

Proof. In Theorem 12 of Chapter 6, we have shown that these conditions are
necessary for A and B to be similar. We show now that they are sufficient by
introducing a special basis in which the action of A is particularly simple and
depends only on the eigenvalues cj and the dimensions (1). We shall deal with each
eigenvalue cl separately; for simplicity we take c = cj to be zero. This can be
accomplished by subtracting cI from A; at the end we shall add cI back.
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The nullspaces of A' are nested:

where d is the index of the eigenvalue c = 0.

Lemma 2. A maps the quotient space N;+1/Ni into N;/Ni_1, and this mapping
is one-to-one.

Proof. A maps N;+1 into N1Ji therefore A maps N;+I /N1 into N;/N;_I. Let {x) be
a nonzero equivalence class in N1+I /Nuu; this means that no x belongs to Ni. It
follows that Ax does not belong to N;_1; this shows that A{x} = {Ax} is not the zero
class in N;/Ni_,. This proves Lemma 2.

It follows from Lemma 2 that

dim (N1+1 /N1) < dim (Ni/N1-I )

The special basis for A in Nd will be introduced in batches. The first batch,

x1i ...I x1o, l0 = dim (Nd/Nd-1),

(2)

(3)

are any 10 vectors in Nd that are linearly independent mod Nd_I. The next batch
is

Ax1,... , Ax,0; (4)

these belong to Nd_ 1, and are linearly independent mod Nd_2. According to (2), with
i = d - 1, dim (Nd_I /Nd_2) > dim (Nd/Nd_1) = lo. We choose the next batch of
basis vectors in Nd_I,

x1o+I,...,xlI, (5)

where 11 = dim (Nd_ I /Nd_2 ), to complete the vectors (4) to a basis of Nd_ 1 /Nd_2.
The next batch is

A2 xl,...,A2xb,Axb+1,...,Ax1,. (6)

The next batch,

x1,+1, ... 5 X12, (7)
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is chosen in Nd_2 to complete the vectors (6) to a basis of Nd_2/Nd_3, where
12 = dim (Nd_2/Nd_3). We continue this process until we reach N1.

It is illuminating to arrange the basis elements in a table:

xl,Axl,...,Ad-lxl

x10, Axl,... , Ad-xla

xlo+1, Axl0+1, , A
d-2xfa+1

Here IJ denotes dim (Nd f/Nd -j_1). There are d basis elements in each of the first lp
rows, for a total of NO. There are d - 1 basis elements in the next 11 -1o rows, for a
total of (d - 1)(11 - lo), and so on. The total number of basis elements is therefore

d1o+(d- 1)(11 -Id-2)

This sum equals

d-1
lo+ +Id-l =E dim (Ndf/Nd f-1) = dim Nd.

0

When we write A in matrix form referring to the special basis constructed before,
the action of A on the components in each of the first 10 rows is of the form

al ... 0

0 ... 0

that is, a d x d matrix with 1 - s along the superdiagonal directly above the main
diagonal, but zeros everywhere else. The action of A on the components in each of
the next 11 - 10 rows is similar, except that the matrices have dimension
(d - 1) x (d - 1), and so on.
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Recall that in order to simplify the presentation of the special basis we have
replaced A by A - cl. Putting back what we have subtracted leads to the following
matrix form of the action of A:

Cl ... 0

1

0 ... C

that is, each entry along the main diagonal is the eigenvalue c, I - s along the
superdiagonal directly above it, and zeros everywhere else. A matrix of this form is
called a Jordan block, when all Jordan blocks are put together, the resulting matrix is
called a Jordan representation of the mapping A.

The Jordan representation of A depends only on the eigenvalues of A and the
dimension of the generalized eigenspaces N! (ak), j = 1, ... , dk, k = 1, .... There-
fore two matrices that have the same eigenvalues and the same-dimensional
eigenspaces and generalized eigenspaces have the same Jordan representation. This
shows that they are similar. 11
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Numerical Range

Let X be a Euclidean space over the complex numbers, and let A be a mapping of X
into X.

Definition. The numerical range of A is the set of complex numbers

(Ax, x), IIx11=1.

Note that the eigenvalues of A belong to its numerical range.

Definition. The numerical radius w(A) of A is the supremum of the absolute
values in the numerical range of A:

w(A) = sup I(A.x, x)I. (I)

Since the eigenvalues of A belong to its numerical range, the numerical radius of A
is > its spectral radius:

r(A) < w(A). (2)

EXERCISE I.

EXERCISE 2.

Show that for A normal, equality holds in (2).

Show that for A normal,

w(A)=IIAII (3)
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Lemma 1. (i) w(A) < 11 A I I

(ii) II A II <_ 2w(A). (4)

Proof. By the Schwarz inequality we have

I(Ax,x)I <_ IIAxII IIxII <_ IIAII IIxII2;

since I I x I I= 1, part (i) follows.
(ii) Decompose A into its self-adjoint and anti-self-adjoint parts:

A=S+iT.

Then

(Ax, x) = (Sx, x) + i(Tx, x)

splits (Ax, x) into its real and imaginary parts; therefore

I(Ax, x) I > (Sx, x), I(Ax, x)I > (Tx, x).

Taking the supremum over all unit vectors x gives

w(A) > w(S), w(A) > w(T).

Since S and T are self-adjoint,

w(S) = I I S II, w(T) =IITII

Adding the two inequalities (5), we get

2w(A)>IISII+IITII

Since IIAII <_ I I S + I I T 11, (4) follows.

Paul Halmos conjectured the following:

Theorem 2. For A as above,

w(A") < w(A)"

(5)

(6)

for every positive integer n.
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The first proof of this result was given by Charles Berger. The remarkable simple
proof presented here is Carl Pearcy's.

Lemma 3. Denote by rk, k = 1, ... , n, the nth roots of unity: rk = e2ilkl". For
all complex numbers z,

1-z"=11 (1-rkz),
k

and

1=1E j(1-rkz).
1 k#j

EXERCISE 3. Verify (7) and (8).
Set A in place of z, we get

I-A"=11 (I - rkA)

and

I=IEjj(I-rkA).
j k#j

Let x be any unit vector, I I x I I = 1; denote

(7)

(8)

(9)

(10)

(I - rkA)x = xj. (11)
k&j

Letting (9) act on x and using (11), we get

x - A"x = (I - rjA)xj, j=1,...,n. (12)

From (10) acting on x, we get

X=I-
n
Exj.

Take the scalar product of (12) with x; since I I x I I = 1, we get on the left

(13)

I-(A"x, x)=(x-A"x, x)=n(x-A"x,Exj); (14),
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in the last step we have used (13). Next use (12) on the right:

By the definition of w(A),

(14)2

I(Axj,xj)1 :5 w(A)IIxj112. (15)

Suppose that w(A) < 1. Then, since I rji = 1, it follows from (15) that the real part of
(14)2 is nonnegative. Since (14)2 equals (14)1, it follows that the real part of
1 - (Ax, x) is nonnegative.

Let w be any complex number, Iwl = 1. From the definition of numerical radius, it
follows that wu(wA) = w(A); therefore, by the above argument, if w(A) < 1, we
obtain

I - Re(w"A"x, x) = 1 - Rew"(A"x, x) > 0.

Since this holds for all w, jwj = 1, it follows that

I(A"x, x)I < 1

for all unit vectors x. It follows that w(A") < 1 if w(A) < 1.
Since w(A) is a homogeneous function of degree 1,

w(zA) = Izlw(A),

and conclusion (6) of Theorem 2 follows.

Combining Theorem 2 with Lemma 1, we obtain the following:

Corollary V. Let A denote an operator as above for which w(A) < 1. Then for
all n, we have

IIA"II<2. (16)

This corollary is useful for studying the stability of difference approximations of
hyperbolic equations.

Note 1. The proof of Theorem 2 nowhere makes use of the finite dimensionality
of the Euclidean space X.

Note 2. Toeplitz and Hausdorff have proved that the numerical range of every
mapping A is a convex subset of the complex plane.

EXERCISE 4. Determine the numerical range of A = (o 1) and of A2 = ( I).
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Bounded set, 195

Caratheodory's theorem, 195
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Cayley-Hamilton theorem, 67
Cayley's Theorem, 305
Characteristic polynomial, 61, 63
Characterstic value see Eigenvalue
Chebyshev:

iteration, 252
polynomial, 253
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Codimension, 16
Commutator, 355
Commuting maps, 74
Compactness of unit ball, 352
Compactness local, 92, 93
Completeness, 92

Condition number, 248
Conjugate gradient, 246, 256
Convergence, 92

rate of, 252, 254, 260
Convex set, 187

extreme point, 195
gauge function, 188
hull, 194
interior point, 188
support function, 193

Cooley, 333
Coset see Quotient space
Cross product, 99

Deift, 269, 276
Determinant, 45, 65

Cauchy, 303
Cramer's rule, 54
integral formula for, 157
Laplace expansion, 52
multiplicative property of, 49
of positive matrices, 154, 156
Vandermonde, 302

Difference equations, 23
Differential equations, see Vibration
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Domain space, 19
Dot product, see Scalar product
Doubly stochastic matrix, 197
Dual:

lattice, 318
norm, 221, 231
space, 14

Duality theorem, 206
economics interpretation of, 208

Eigenvalue, 59, 60, 262
of anti-selfadjoint map, 112
index, 72
multiple, 68
of selfadjoint map, 106
simple, 129
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of unitary map, 113
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Eigenvector, 59, 60
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generalized, 69

Energy see vibration
Error, 248
Euclidean structure, 79
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Euler's theorem, 172
Exponential function, 111, 127, 128

Farkas-Minkowski theorem, 203
Fast matrix multiplication, 320
Fast Fourier transform, 328
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Finite Fourier transform, 119, 328
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divergence, 180

Francis, 263
Frequency, 180
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Fundamental theorem, 20
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Hadamard, 157
Hahn-Banach theorem, 191
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Halmos-Berger-Pearcy, 369
Hamiltonian equation, 312
Helly's theorem, 199
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Hermitean symmetric, 101
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Hilbert-Schmidt norm, 99
Holder inequality, 215
Householder, 246, 266
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separation theorem, 190, 192

Inner product, see Scalar product
Interpolation, 22
Inverse, 25

Isometry, See also orthogonal
and unitary matrix, 87
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Iteration:

Chebyshev, 252, 253
conjugate gradient, 256
iterative methods, 248
steepest descent, 249

Jacobi, 246
Jacobian, 177
Jordan form xii, 366

Konig-Birkhoff theorem, 198
Krein-Milman theorem, 199
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Law of Inertia, 105
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Liapunov's Theorem, 358
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bilinear, 79
combination, 4
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function, 13
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operator, 20
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system of equations, 39
transformation, 20
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algebra of, 24
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norm of, 89, 230
transpose of, 26
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group, 343
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Matrix, 33
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Gram, 152, 316
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Jacobian, 177
multiplication of, 34, 35, 320
normal, 112
orthogonal, 89
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selfadjoint, 101
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symmetric, 101
symplectic, 309
transpose, 36
tridiagonal, 38
unimodular, 318
unitary, 96
valued function, 122

Minimal polynomial, 72, 73
Minmax principle, 116, 118

of game theory, 210
Monotonic matrix function, 151
Minkowski metric, 342, 349
Moser's Theorem, 273
Muraki, 142

Nanda, 269
Non-Euclidean geometry, 347
Norm(s), 89

equivalent, 217
Euclidean, 79
dual, 90
of mapping, 230
of matrix, 89

Normal mode, 184
Nonmed linear space, 214

complex, 225
Nullspace, 20
Numerical

radius, 367
range, 367
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Orthogonal, 80

complement, 82
group, 89
matrix, 89, 108
projection, 83

Orthonormal basis, 80

Parallelogram law, 227
Permutation, 46

group, 34, 46
matrix, 197
signature of, 47

Person's theorem, 237
Pfaffian, 305
Polar decomposition, 169
Polynomial,

characteristic, 61, 63
minimal, 72

Population evolution, 242
Positive definite, see Positive

selfadjoint
Positive selfadjoint mapping, 117, 143
Principal minor, 131, 162
Projection, 30

orthogonal, 110
Phythagorean theorem, 80
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QR algorithm, 263
Quadratic form, 102

diagonal form, 103
Quadrature formula, 17
Quotient space, 8

nonmed, 225

Random, 200
Range, 20
Rank see row and column rank
Rayleigh quotient, 114
Reflection, 89, 226
Rellich's theorem, 140, 353
Residual, 249
Resolution of the identity, 110
Riesz, F, 152, 220
Rigid motion, 172

angular velocity vector, 176
infinitesimal generator, 174

Rotation, 172
Rounding, 247

Scalar, 2
Scalar product, 77, 79
Schur factorization, 335
Schur's theorem, 153, 316
Schwarz inequality, 79
Selfadjoint, 106

anti-selfadjoint, 112
part, 112

Similarity, 29, 55
Simplex, ordered, 44
Singular value, 170
Solving systems of linear equations,

Chebyshev iteration, 252
optimal three-term iteration, 256
steepest descent, 249
three-term Chebyshev

iteration, 255
Gaussian elimination, 39

Spectral Theorem, 70
of commuting maps, 74
mapping theorem, 66
redius, 97, 334
resolution, 110
of selfadjoint maps, 106

Spectrum of a matrix:
anti-selfadjoint, 112
orthogonal, 86, 113

selfadjoint, 106
symplectic, 309
unitary, 113

Square root of positive matrix, 145
Steepest descent see iteration
Stiefel, 246
Stochastic matrix, 240
Strassen, 320
Subspace, 4
distance from, 84, 223
Support function, 193
Symmetrized product, 148
Symplectic matrix, 309

group, 309

Target space, 19
Tensor product, 313
Toda flow, 269
Tomei, 269
Trace, 55, 65
Transpose:

of linear map, 26
of matrix, 36

Triangle inequality, 80, 215
Tukey, 333

Underdetermined systems of linear
equation, 21

Unitary:
map, 96
group, 96

Vandermonde matrix, 302
determinant, 302

Vector, 1
norm of, 79, 214
valued function, 121

Vector space see Linear space
Viberation, 180

amplitude, 180, 182
energy, 180, 182
frequency of, 180
phase, 180

Volume, 44
Signed, 45

von Neumann, 213, 246
and Wigner, 141

Wieland-Hoffman theorem, 164
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